[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

Overview

DeepSurfels: Learning Online Appearance Fusion

Paper | Video | Project Page

pipeline

This is the official implementation of the CVPR 2021 submission DeepSurfels: Learning Online Appearance Fusion

DeepSurfels is a novel 3D representation for geometry and appearance information that combines planar surface primitives with voxel grid representation for improved scalability and rendering quality.

If you find our code or paper useful, please consider citing

@InProceedings{DeepSurfels:CVPR:21,
    title = {{DeepSurfels}: Learning Online Appearance Fusion},
    author = {Mihajlovic, Marko and Weder, Silvan and Pollefeys, Marc and Oswald, Martin R.},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021},
}

Contact Marko Mihajlovic for questions or open an issue / a pull request.

Installation

The prerequest is to install python packages specified in the requirements.txt file, which can conveniently accomplished by using an Anaconda environment.

# clone the repo
git clone https://github.com/onlinereconstruction/deep_surfels.git
cd ./deep_surfels

# create environment
conda env create -f environment.yml
conda activate deep_surfels

Then install the deep_surfel package via pip

pip install ./deep_surfel

Data

Directory ./data_prep/data_samples contains preprocessed toy data samples. See ./data_prep/from_depth_frames.py on how to prepare your own dataset.

Usage

To run the deterministic fusion:

cd appearance_fusion
python test.py -c ../configurations/sample_deterministic.yml --extract_meshes

To trained the learned module:

python train.py -c ../configurations/sample.yml

To evaluate the trained module:

python test.py -c ../configurations/sample.yml --extract_meshes

The rendered images will be stored in the specified logging_root_dir directory. See ./appearance_fusion/config.py for all available configuration parameters.

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

โ€ƒโ€ƒโ€ƒ VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics ๐ŸŒŠ ๐ŸŒŠ ๐ŸŒŠ together with Finite Differences, explicit time

Felix Kรถhler 4 Nov 12, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes ๐Ÿงฌ ๐Ÿ”ฌ ๐Ÿ’ป Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022