Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

Related tags

Deep LearningshRIOL
Overview

shRIOL

The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology.

To compile the Java files: "javac -cp ./src/;./lib/* -d ./class ./src/DetectViolations.java"
To run compiled class files: "java -cp ./class;./lib/* DetectViolations"

By executing the Java files, the following messages are printed on screen. See the paper for more details and explanations.

The model is not GDPR-compliant. The following violations have been detected:
----------------------------------------------------------------------------------------------
Personal Data Processing: http://w3.org/ns/shRIOL#pdpHans
MESSAGE: The personal data processing is not transparent, as required/defined by Article 12 of the GDPR
EXPLANATION: Specifically, these legal authorities judged one or more communications related to pdpHans as follows:
	- courtA does NOT deem the communication c2Hans enough readable.
	- courtB deems the communication c2Hans enough readable.
----------------------------------------------------------------------------------------------
Personal Data Processing: http://w3.org/ns/shRIOL#pdpLuca
MESSAGE: The personal data processing is not lawful, as required by Art.5(1)(a) and defined by Art.6 of the GDPR.
EXPLANATION: The age of the data subject is below the minimal age for consent in his/her Member State. See Art.8(1) of the GDPR.
----------------------------------------------------------------------------------------------
Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

DenseNAS The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search. Neural architecture search (NAS)

Jamin Fong 291 Nov 18, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: ไฝœ่€…ๅœจ่ฎบๆ–‡ไธญๆๅˆฐไฝฟ็”จ็œŸๅฎž็š„wordๅŽปๅˆๅง‹ๅŒ–prefix็š„ๆ“ไฝœ๏ผˆInitializing the prefix with activations of real words๏ผŒsignificantly improves generation๏ผ‰ใ€‚ๆˆ‘ๅœจไฝฟ็”จไฝœ่€…ๆไพ›็š„

Andrew Zeng 4 Jul 11, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021