The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

Overview

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also provides the LaTeX and BibTeX sources required for replicating the paper.

Be sure to pip install hilbertcurve prior to running any of this software (the codes depend on HilbertCurve). Also be sure to gunzip codes/cup98lrn.txt prior to running codes/kddcup98.py.

The main files in the repository are the following:

tex/multidim.pdf PDF version of the paper

tex/multidim.tex LaTeX source for the paper

tex/multidim.bib BibTeX source for the paper

tex/diffs0.pdf tex/diffs1.pdf tex/sums0.pdf tex/sums1.pdf tex/partition.pdf Graphics for Subsection 2.3 of the paper

codes/acs.py Python script for processing the American Community Survey

codes/psam_h06.csv Microdata from the 2019 American Community Survey of the U.S. Census Bureau

codes/kddcup98.py Python script for processing the KDD Cup 1998 data

codes/cup98lrn.txt.gz Data from the 1998 KDD Cup

codes/synthetic.py Python script for generating and processing synthetic examples

codes/hilbert.pdf Plot of an approximation with 255 line segments to the Hilbert curve in 2D

codes/disjoint.py Functions for plotting differences between two subpops. with disjoint scores (redistributed from the GitHub repo fbcddisgraph)

codes/disjoint.py Functions for plotting differences of a subpop. from the full population (redistributed from the GitHub repo fbcdgraph)

codes/subpop_weighted.py Functions for plotting differences of a subpop. from the full pop. with weights (redistributed from the GitHub repo fbcdgraph)

Regenerating all the figures requires running in the directory codes acs.py, kddcup98.py, and synthetic.py; issue the commands

cd codes
pip install hilbertcurve
gunzip cup98lrn.txt.gz
python acs.py --var 'MV'
python acs.py --var 'NOC'
python acs.py --var 'MV+NOC'
python acs.py --var 'NOC+MV'
python kddcup98.py
python synthetic.py

Copyright license

This metamulti software is licensed under the (MIT-type) copyright LICENSE file in the root directory of this source tree.

Owner
Meta Research
Meta Research
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022