code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Overview

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Code for paper:

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang.
NeurIPS 2020.

arch2vec
Top: The supervision signal for representation learning comes from the accuracies of architectures selected by the search strategies. Bottom (ours): Disentangling architecture representation learning and architecture search through unsupervised pre-training.

The repository is built upon pytorch_geometric, pybnn, nas_benchmarks, bananas.

1. Requirements

  • NVIDIA GPU, Linux, Python3
pip install -r requirements.txt

2. Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord under ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/data.json.

Pretraining

bash models/pretraining_nasbench101.sh

The pretrained model will be saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-101.

Run experiments of RL search on NAS-Bench-101

bash run_scripts/run_reinforce_supervised.sh 
bash run_scripts/run_reinforce_arch2vec.sh 

Search results will be saved in ./saved_logs/rl/dim16

Generate json file:

python plot_scripts/plot_reinforce_search_arch2vec.py 

Run experiments of BO search on NAS-Bench-101

bash run_scripts/run_dngo_supervised.sh 
bash run_scripts/run_dngo_arch2vec.sh 

Search results will be saved in ./saved_logs/bo/dim16.

Generate json file:

python plot_scripts/plot_dngo_search_arch2vec.py

Plot NAS comparison curve on NAS-Bench-101:

python plot_scipts/plot_nasbench101_comparison.py

Plot CDF comparison curve on NAS-Bench-101:

Download the search results from search_logs.

python plot_scripts/plot_cdf.py

3. Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth under ./data folder.

python preprocessing/nasbench201_json.py

Data corresponding to the three datasets in NAS-Bench-201 will be saved in folder ./data/ as cifar10_valid_converged.json, cifar100.json, ImageNet16_120.json.

Pretraining

bash models/pretraining_nasbench201.sh

The pretrained model will be saved in ./pretrained/dim-16/.

Note that the pretrained model is shared across the 3 datasets in NAS-Bench-201.

arch2vec extraction

bash run_scripts/extract_arch2vec_nasbench201.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/ as cifar10_valid_converged-arch2vec.pt, cifar100-arch2vec.pt and ImageNet16_120-arch2vec.pt.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-201.

Run experiments of RL search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_reinforce_arch2vec_nasbench201_ImageNet.sh

Run experiments of BO search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_bo_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_bo_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_bo_arch2vec_nasbench201_ImageNet.sh

Summarize search result on NAS-Bench-201

python ./plot_scripts/summarize_nasbench201.py

The corresponding table will be printed to the console.

4. Experiments on DARTS Search Space

CIFAR-10 can be automatically downloaded by torchvision, ImageNet needs to be manually downloaded (preferably to a SSD) from http://image-net.org/download.

Random sampling 600,000 isomorphic graphs in DARTS space

python preprocessing/gen_isomorphism_graphs.py

Data will be saved in ./data/data_darts_counter600000.json.

Alternatively, you can download the extracted data_darts_counter600000.json.

Pretraining

bash models/pretraining_darts.sh

The pretrained model is saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec_darts.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/arch2vec-darts.pt.

Alternatively, you can download the pretrained arch2vec on DARTS search space.

Run experiments of RL search on DARTS search space

bash run_scripts/run_reinforce_arch2vec_darts.sh

logs will be saved in ./darts-rl/.

Final search result will be saved in ./saved_logs/rl/dim16.

Run experiments of BO search on DARTS search space

bash run_scripts/run_bo_arch2vec_darts.sh

logs will be saved in ./darts-bo/ .

Final search result will be saved in ./saved_logs/bo/dim16.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_rl --seed 1
python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_bo --seed 1
  • Expected results (RL): 2.60% test error with 3.3M model params.
  • Expected results (BO): 2.48% test error with 3.6M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch arch2vec_rl --seed 1 
python darts/cnn/train_imagenet.py  --arch arch2vec_bo --seed 1
  • Expected results (RL): 25.8% test error with 4.8M model params and 533M mult-adds.
  • Expected results (RL): 25.5% test error with 5.2M model params and 580M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py arch2vec_rl
python darts/cnn/visualize.py arch2vec_bo

5. Analyzing the results

Visualize a sequence of decoded cells from the latent space

Download pretrained supervised embeddings of nasbench101 and nasbench201.

bash plot_scripts/drawfig5-nas101.sh # visualization on nasbench-101
bash plot_scripts/drawfig5-nas201.sh # visualization on nasbench-201
bash plot_scripts/drawfig5-darts.sh  # visualization on darts

The plots will be saved in ./graphvisualization.

Plot distribution of L2 distance by edit distance

Install nas_benchmarks and download nasbench_full.tfrecord under the same directory.

python plot_scripts/distance_comparison_fig3.py

Latent space 2D visualization

bash plot_scripts/drawfig4.sh

the plots will be saved in ./density.

Predictive performance comparison

Download predicted_accuracy under saved_logs/.

python plot_scripts/pearson_plot_fig2.py

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2020arch,
  title = {Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?},
  author = {Yan, Shen and Zheng, Yu and Ao, Wei and Zeng, Xiao and Zhang, Mi},
  booktitle = {NeurIPS},
  year = {2020}
}
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023