code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Overview

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Code for paper:

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang.
NeurIPS 2020.

arch2vec
Top: The supervision signal for representation learning comes from the accuracies of architectures selected by the search strategies. Bottom (ours): Disentangling architecture representation learning and architecture search through unsupervised pre-training.

The repository is built upon pytorch_geometric, pybnn, nas_benchmarks, bananas.

1. Requirements

  • NVIDIA GPU, Linux, Python3
pip install -r requirements.txt

2. Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord under ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/data.json.

Pretraining

bash models/pretraining_nasbench101.sh

The pretrained model will be saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-101.

Run experiments of RL search on NAS-Bench-101

bash run_scripts/run_reinforce_supervised.sh 
bash run_scripts/run_reinforce_arch2vec.sh 

Search results will be saved in ./saved_logs/rl/dim16

Generate json file:

python plot_scripts/plot_reinforce_search_arch2vec.py 

Run experiments of BO search on NAS-Bench-101

bash run_scripts/run_dngo_supervised.sh 
bash run_scripts/run_dngo_arch2vec.sh 

Search results will be saved in ./saved_logs/bo/dim16.

Generate json file:

python plot_scripts/plot_dngo_search_arch2vec.py

Plot NAS comparison curve on NAS-Bench-101:

python plot_scipts/plot_nasbench101_comparison.py

Plot CDF comparison curve on NAS-Bench-101:

Download the search results from search_logs.

python plot_scripts/plot_cdf.py

3. Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth under ./data folder.

python preprocessing/nasbench201_json.py

Data corresponding to the three datasets in NAS-Bench-201 will be saved in folder ./data/ as cifar10_valid_converged.json, cifar100.json, ImageNet16_120.json.

Pretraining

bash models/pretraining_nasbench201.sh

The pretrained model will be saved in ./pretrained/dim-16/.

Note that the pretrained model is shared across the 3 datasets in NAS-Bench-201.

arch2vec extraction

bash run_scripts/extract_arch2vec_nasbench201.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/ as cifar10_valid_converged-arch2vec.pt, cifar100-arch2vec.pt and ImageNet16_120-arch2vec.pt.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-201.

Run experiments of RL search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_reinforce_arch2vec_nasbench201_ImageNet.sh

Run experiments of BO search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_bo_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_bo_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_bo_arch2vec_nasbench201_ImageNet.sh

Summarize search result on NAS-Bench-201

python ./plot_scripts/summarize_nasbench201.py

The corresponding table will be printed to the console.

4. Experiments on DARTS Search Space

CIFAR-10 can be automatically downloaded by torchvision, ImageNet needs to be manually downloaded (preferably to a SSD) from http://image-net.org/download.

Random sampling 600,000 isomorphic graphs in DARTS space

python preprocessing/gen_isomorphism_graphs.py

Data will be saved in ./data/data_darts_counter600000.json.

Alternatively, you can download the extracted data_darts_counter600000.json.

Pretraining

bash models/pretraining_darts.sh

The pretrained model is saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec_darts.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/arch2vec-darts.pt.

Alternatively, you can download the pretrained arch2vec on DARTS search space.

Run experiments of RL search on DARTS search space

bash run_scripts/run_reinforce_arch2vec_darts.sh

logs will be saved in ./darts-rl/.

Final search result will be saved in ./saved_logs/rl/dim16.

Run experiments of BO search on DARTS search space

bash run_scripts/run_bo_arch2vec_darts.sh

logs will be saved in ./darts-bo/ .

Final search result will be saved in ./saved_logs/bo/dim16.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_rl --seed 1
python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_bo --seed 1
  • Expected results (RL): 2.60% test error with 3.3M model params.
  • Expected results (BO): 2.48% test error with 3.6M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch arch2vec_rl --seed 1 
python darts/cnn/train_imagenet.py  --arch arch2vec_bo --seed 1
  • Expected results (RL): 25.8% test error with 4.8M model params and 533M mult-adds.
  • Expected results (RL): 25.5% test error with 5.2M model params and 580M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py arch2vec_rl
python darts/cnn/visualize.py arch2vec_bo

5. Analyzing the results

Visualize a sequence of decoded cells from the latent space

Download pretrained supervised embeddings of nasbench101 and nasbench201.

bash plot_scripts/drawfig5-nas101.sh # visualization on nasbench-101
bash plot_scripts/drawfig5-nas201.sh # visualization on nasbench-201
bash plot_scripts/drawfig5-darts.sh  # visualization on darts

The plots will be saved in ./graphvisualization.

Plot distribution of L2 distance by edit distance

Install nas_benchmarks and download nasbench_full.tfrecord under the same directory.

python plot_scripts/distance_comparison_fig3.py

Latent space 2D visualization

bash plot_scripts/drawfig4.sh

the plots will be saved in ./density.

Predictive performance comparison

Download predicted_accuracy under saved_logs/.

python plot_scripts/pearson_plot_fig2.py

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2020arch,
  title = {Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?},
  author = {Yan, Shen and Zheng, Yu and Ao, Wei and Zeng, Xiao and Zhang, Mi},
  booktitle = {NeurIPS},
  year = {2020}
}
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
113 Nov 28, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022