[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

Related tags

Deep LearningSSUL
Overview

SSUL - Official Pytorch Implementation (NeurIPS 2021)

SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning
Sungmin Cha1,2*, Beomyoung Kim3*, YoungJoon Yoo2,3, Taesup Moon1
* Equal contribution

1 Department of Electrical and Computer Engineering, Seoul National University
2 NAVER AI Lab
3 Face, NAVER Clova

NeurIPS 2021

Paper

Abtract

This paper introduces a solid state-of-the-art baseline for a class-incremental semantic segmentation (CISS) problem. While the recent CISS algorithms utilize variants of the knowledge distillation (KD) technique to tackle the problem, they failed to fully address the critical challenges in CISS causing the catastrophic forgetting; the semantic drift of the background class and the multi-label prediction issue. To better address these challenges, we propose a new method, dubbed SSUL-M (Semantic Segmentation with Unknown Label with Memory), by carefully combining techniques tailored for semantic segmentation. Specifically, we claim three main contributions. (1) defining unknown classes within the background class to help to learn future classes (help plasticity), (2) freezing backbone network and past classifiers with binary cross-entropy loss and pseudo-labeling to overcome catastrophic forgetting (help stability), and (3) utilizing tiny exemplar memory for the first time in CISS to improve both plasticity and stability. The extensively conducted experiments show the effectiveness of our method, achieving significantly better performance than the recent state-of-the-art baselines on the standard benchmark datasets. Furthermore, we justify our contributions with thorough ablation analyses and discuss different natures of the CISS problem compared to the traditional class-incremental learning targeting classification.

Experimental Results (mIoU all)

Method VOC 10-1 (11 tasks) VOC 15-1 (6 tasks) VOC 5-3 (6 tasks) VOC 19-1 (2 tasks) VOC 15-5 (2 tasks) VOC 5-1 (16 tasks) VOC 2-1 (19 tasks)
MiB 12.65 29.29 46.71 69.15 70.08 10.03 9.88
PLOP 30.45 54.64 18.68 73.54 70.09 6.46 4.47
SSUL 59.25 67.61 56.89 75.44 71.22 48.65 38.32
SSUL-M 64.12 71.37 58.37 76.49 73.02 55.11 44.74
Method ADE 100-5 (11 tasks) ADE 100-10 (6 tasks) ADE 100-50 (2 tasks) ADE 50-50 (3 tasks)
MiB 25.96 29.24 32.79 29.31
PLOP 28.75 31.59 32.94 30.40
SSUL 32.48 33.10 33.58 29.56
SSUL-M 34.56 34.46 34.37 29.77

Getting Started

Requirements

  • torch>=1.7.1
  • torchvision>=0.8.2
  • numpy
  • pillow
  • scikit-learn
  • tqdm
  • matplotlib

Datasets

data_root/
    --- VOC2012/
        --- Annotations/
        --- ImageSet/
        --- JPEGImages/
        --- SegmentationClassAug/
        --- saliency_map/
    --- ADEChallengeData2016
        --- annotations
            --- training
            --- validation
        --- images
            --- training
            --- validation

Download SegmentationClassAug and saliency_map

Class-Incremental Segmentation Segmentation on VOC 2012

DATA_ROOT=your_dataset_root_path
DATASET=voc
TASK=15-1 # [15-1, 10-1, 19-1, 15-5, 5-3, 5-1, 2-1, 2-2]
EPOCH=50
BATCH=32
LOSS=bce_loss
LR=0.01
THRESH=0.7
MEMORY=100 # [0 (for SSUL), 100 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Class-Incremental Segmentation Segmentation on ADE20K

DATA_ROOT=your_dataset_root_path
DATASET=ade
TASK=100-5 # [100-5, 100-10, 100-50, 50-50]
EPOCH=100
BATCH=24
LOSS=bce_loss
LR=0.05
THRESH=0.7
MEMORY=300 # [0 (for SSUL), 300 (for SSUL-M)]

python main.py --data_root ${DATA_ROOT} --model deeplabv3_resnet101 --gpu_id 0,1 --crop_val --lr ${LR} --batch_size ${BATCH} --train_epoch ${EPOCH} --loss_type ${LOSS} --dataset ${DATASET} --task ${TASK} --overlap --lr_policy warm_poly --pseudo --pseudo_thresh ${THRESH} --freeze --bn_freeze --unknown --w_transfer --amp --mem_size ${MEMORY}

Qualitative Results

Acknowledgement

Our implementation is based on these repositories: DeepLabV3Plus-Pytorch, Torchvision.

License

SSUL
Copyright 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022