Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Related tags

Deep Learningquince
Overview

🍐 quince

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Image of Gamma Sweep

🍐 Installation

$ git clone [email protected]:anndvision/quince.git
$ cd quince
$ conda env create -f environment.yml
$ conda activate quince

🍐 Example: Replicating IHDP results

Step 1: Hyperparameter Tuning (optional)

Find the best hyperparameters using the tune function, on a dataset like ihdp for an ensemble model.

$ quince \
    tune \
        --job-dir ~/experiments/quince/tuning/ \
        --max-samples 500 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble

Step 2: Train ensembles over a number of trials

Here, we use the train function to fit an ensemble of mixture density networks on 10 realizations of the ihdp with hidden confounding dataset. For the full results change --num-trials 1000

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 10 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.3 \
        --dropout-rate 0.5 \
        --spectral-norm 6.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 10

Step 3: Evaluate

Plots will be written to the experiment-dir

$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/ihdp/hc-True_beta-None/ensemble/dh-200_nc-5_dp-4_ns-0.3_dr-0.5_sn-6.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-deferral \
    plot-errorbars \
        --trial 0

🍐 Replicating Other Results

Simulated Data

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 50 \
        --gpu-per-trial 0.2 \
    synthetic \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.0 \
        --dropout-rate 0.1 \
        --spectral-norm 6.0 \
        --learning-rate 1e-3 \
        --batch-size 32 \
        --epochs 500 \
        --ensemble-size 10
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/synthetic/ne-1000_gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-4_ns-0.0_dr-0.1_sn-6.0_lr-0.001_bs-32_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-ignorance \
    print-summary \
    print-summary-kernel \
    paired-t-test

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

HCMNIST

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 20 \
        --gpu-per-trial 0.5 \
    hcmnist \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 2 \
        --negative-slope 0.0 \
        --dropout-rate 0.15 \
        --spectral-norm 3.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 5
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/hcmnist/gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-2_ns-0.0_dr-0.15_sn-3.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 1.0 \
    print-summary

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022