Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

Overview

License: CC BY 4.0 firebase-hosting test-and-format

federated is the source code for the Bachelor's Thesis

Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU)

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples, without exchanging them. In this project, the decentralized data is the MIT-BIH Arrhythmia Database.

Table of Contents

Features

  • ML pipelines using centralized learning or federated learning.
  • Support for the following aggregation methods:
    • Federated Stochastic Gradient Descent (FedSGD)
    • Federated Averaging (FedAvg)
    • Differentially-Private Federated Averaging (DP-FedAvg)
    • Federated Averaging with Homomorphic Encryption
    • Robust Federated Aggregation (RFA)
  • Support for the following models:
    • A simple softmax regressor
    • A feed-forward neural network (ANN)
    • A convolutional neural network (CNN)
  • Model compression in federated learning.

Installation

Prerequisites

Initial Setup

1. Cloning federated

$ git clone https://github.com/dilawarm/federated.git
$ cd federated

2. Getting the Dataset

To download the MIT-BIH Arrhythmia Database dataset used in this project, go to https://www.kaggle.com/shayanfazeli/heartbeat and download the files

  • mitbih_train.csv
  • mitbih_test.csv

Then write:

mkdir data
mkdir data/mitbih

and move the downloaded data into the data/mitbih folder.

Installing federated locally

1. Install the Python development environment

On Ubuntu:

$ sudo apt update
$ sudo apt install python3-dev python3-pip  # Python 3.8
$ sudo apt install build-essential          # make
$ sudo pip3 install --user --upgrade virtualenv

On macOS:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ export PATH="/usr/local/bin:/usr/local/sbin:$PATH"
$ brew update
$ brew install python  # Python 3.8
$ brew install make    # make
$ sudo pip3 install --user --upgrade virtualenv

2. Create a virtual environment

$ virtualenv --python python3 "venv"
$ source "venv/bin/activate"
(venv) $ pip install --upgrade pip

3. Install the dependencies

(venv) $ make install

4. Test TensorFlow Federated

(venv) $ python -c "import tensorflow_federated as tff; print(tff.federated_computation(lambda: 'Hello World')())"

Installing with Docker (optional)

Build and run image from Dockerfile

$ make docker

Running experiments with federated

federated has a client program, where one can initialize the different pipelines and train models with centralized or federated learning. To run this client program:

(venv) $ make help

This will display a list of options:

usage: python -m federated.main [-h] -l  -n  [-e] [-op] [-b] [-o] -m  [-lr]

Experimentation pipeline for federated 🚀

optional arguments:
  -b , --batch_size     The batch size. (default: 32)
  -e , --epochs         Number of global epochs. (default: 15)
  -h, --help            show this help message and exit
  -l , --learning_approach 
                        Learning apporach (centralized, federated). (default: None)
  -lr , --learning_rate 
                        Learning rate for server optimizer. (default: 1.0)
  -m , --model          The model to be trained with the learning approach (ann, softmax_regression, cnn). (default: None)
  -n , --experiment_name 
                        The name of the experiment. (default: None)
  -o , --output         Path to the output folder where the experiment is going to be saved. (default: history)
  -op , --optimizer     Server optimizer (adam, sgd). (default: sgd)

Here is an example on how to train a cnn model with federated learning for 10 global epochs using the SGD server-optimizer with a learning rate of 0.01:

(venv) $ python -m federated.main --learning_approach federated --model cnn --epochs 10 --optimizer sgd --learning_rate 0.01 --experiment_name experiment_name --output path/to/experiments

Running the command illustrated above, will display a list of input fields where one can fill in more information about the training configuration, such as aggregation method, if differential privacy should be used etc. Once all training configurations have been decided, the pipeline will be initialized. All logs and training configurations will be stored in the folder path/to/experiments/logdir/experiment_name.

Analyzing experiments with federated

TensorBoard

To analyze the results with TensorBoard:

(venv) $ tensorboard --logdir=path/to/experiments/logdir/experiment_name --port=6060

Jupyter Notebook

To analyze the results in the ModelAnalysis notebook, open the notebook with your editor. For example:

(venv) $ code notebooks/ModelAnalysis.ipynb

Replace the first line in this notebook with the absolute path to your experiment folder, and run the notebook to see the results.

Documentation

The documentation can be found here.

To generate the documentation locally:

(venv) $ cd docs
(venv) $ make html
(venv) $ firefox _build/html/index.html

Tests

The unit tests included in federated are:

  • Tests for data preprocessing
  • Tests for different machine learning models
  • Tests for the training loops
  • Tests for the different privacy algorithms such as RFA.

To run all the tests:

(venv) $ make tests

To generate coverage after running the tests:

(venv) $ coverage html
(venv) $ firefox htmlcov/index.html

See the Makefile for more commands to test the modules in federated separately.

How to Contribute

  1. Clone repo and create a new branch:
$ git checkout https://github.com/dilawarm/federated.git -b name_for_new_branch
  1. Make changes and test.
  2. Submit Pull Request with comprehensive description of changes.

Owners

Pernille Kopperud Dilawar Mahmood

Enjoy! 🙂

You might also like...
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

Comments
  • Replace Makefile with .sh

    Replace Makefile with .sh

    It's not necessary to install make to run the commands. The project should use a .sh file instead so that users do not have to install make (one less dependency).

    enhancement 
    opened by dilawarm 0
Releases(v1.0)
Owner
Dilawar Mahmood
3rd year Computer science student at Norwegian University of Science and Technology
Dilawar Mahmood
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023