Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Overview

Image Classification Project Killer in PyTorch

This repo is designed for those who want to start their experiments two days before the deadline and kill the project in the last 6 hours. 🌚 Inspired by fb.torch.resnet, it provides fast experiment setup and attempts to maximize the number of projects killed within the given time. Please feel free to submit issues or pull requests if you want to contribute.

News

Usage

Both Python 2.7 and 3 are supported; however, it was mainly tested on Python 3. Use python main.py -h to show all arguments.

Training

Train a ResNet-56 on CIFAR-10 with data augmentation using GPU0:

CUDA_VISIBLE_DEVICES=0 python main.py --data cifar10 --data_aug --arch resnet --depth 56 --save save/cifar10 -resnet-56 --epochs 164

Train a ResNet-110 on CIFAR-100 without data augmentation using GPU0 and GPU2:

CUDA_VISIBLE_DEVICES=0,2 python main.py --data cifar100 --arch resnet --depth 110 --save save/cifar100-resnet-110 --epochs 164

See scripts/cifar10.sh and scripts/cifar100.sh for more training examples.

Evaluation

python main.py --resume save/resnet-56/model_best.pth.tar --evaluate test --data cifar10

Adding your custom model

You can write your own model in a .py file and put it into models folder. All you need it to provide a createModel(arg1, arg2, **kwarg) function that returns the model which is an instance of nn.Module. Then you'll be able to use your model by setting --arch your_model_name (assuming that your model is in a the file models/your_model_name).

Show Training & Validation Results

Python script

getbest.py save/* FOLDER_1 FOLDER_2

In short, this script reads the scores.tsv in the saving folders and display the best validation errors of them.

Using Tensorboard

tensorboard --logdir save --port PORT

Features

Experiment Setup & Logging

  • Ask before overwriting existing experiments, and move the old one to /tmp instead of overwriting
  • Saving training/validation loss, errors, and learning rate of each epoch to a TSV file
  • Automatically copying all source code to saving directory to prevent accidental deleteion of codes. This is inspired by SGAN code.
  • TensorBoard support using tensorboard_logger
  • One script to show all experiment results
  • Display training time
  • Holding out testing set and using validation set for hyperparameter tuning experiments
  • GPU support
  • Adding save & data folders to .gitignore to prevent commiting the datasets and trained models
  • Result table
  • Python 2.7 & 3.5 support

Models (See models folder for details)

Datasets

CIFAR

Last 5000 samples in the original training set is used for validation. Each pixel is in [0, 1]. Based on experiments results, normalizing the data to zero mean and unit standard deviation seems to be redundant.

  • CIFAR-10
  • CIFAR-100

Results

Test Error Rate (in percentage) with validation set

The number of parameters are calculated based on CIFAR-10 model. ResNets were training with 164 epochs (the same as the default setting in fb.resnet.torch) and DenseNets were trained 300 epochs. Both are using batch_size=64.

Model Parameters CIFAR-10 CIFAR-10 (aug) CIFAR-100 CIFAR-100 (aug)
ResNet-56 0.86M 6.82
ResNet-110 1.73M
ResNet-110 with Stochastic Depth 1.73M 5.25 24.2
DenseNet-BC-100 (k=12) 0.8M 5.34
DenseNet-BC-190 (k=40) 25.6M
Your model

Top1 Testing Error Rate (in percentage)

Coming soon...

File Descriptions

  • main.py: main script to train or evaluate models
  • train.py: training and evaluation part of the code
  • config: storing configuration of datasets (and maybe other things in the future)
  • utils.pypy: useful functions
  • getbest.py: display the best validation error of each saving folder
  • dataloader.py: defines getDataloaders function which is used to load datasets
  • models: a folder storing all network models. Each script in it should contain a createModel(**kwargs) function that takes the arguments and return a model (subclass of nn.Module) for training
  • scripts: a folder storing example training commands in UNIX shell scripts

Acknowledgement

This code is based on the ImageNet training script provided in PyTorch examples.

The author is not familiar with licensing. Please contact me there is there are any problems with it.

Owner
Felix Wu
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023