Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Overview

Code for KSDAgg: a KSD aggregated goodness-of-fit test

This GitHub repository contains the code for the reproducible experiments presented in our paper KSD Aggregated Goodness-of-fit Test:

  • Gamma distribution experiment,
  • Gaussian-Bernoulli Restricted Boltzmann Machine experiment,
  • MNIST Normalizing Flow experiment.

We provide the code to run the experiments to generate Figures 1-4 and Table 1 from our paper, those can be found in figures.

Our aggregated test KSDAgg is implemented in ksdagg.py. We provide code for two quantile estimation methods: the wild bootstrap and the parametric bootstrap. Our implementation uses the IMQ (inverse multiquadric) kernel with a collection of bandwidths consisting of the median bandwidth scaled by powers of 2, and with one of the four types of weights proposed in MMD Aggregated Two-Sample Test. We also provide custom KSDAgg functions in ksdagg.py which allow for the use of any kernel collections and weights.

Requirements

  • python 3.9

Installation

In a chosen directory, clone the repository and change to its directory by executing

git clone [email protected]:antoninschrab/ksdagg-paper.git
cd ksdagg-paper

We then recommend creating and activating a virtual environment by either

  • using venv:
    python3 -m venv ksdagg-env
    source ksdagg-env/bin/activate
    # can be deactivated by running:
    # deactivate
    
  • or using conda:
    conda create --name ksdagg-env python=3.9
    conda activate ksdagg-env
    # can be deactivated by running:
    # conda deactivate
    

The required packages can then be installed in the virtual environment by running

python -m pip install -r requirements.txt

Generating or downloading the data

The data for the Gaussian-Bernoulli Restricted Boltzmann Machine experiment and for the MNIST Normalizing Flow experiment can

  • be obtained by executing
    python generate_data_rbm.py
    python generate_data_nf.py
    
  • or, as running the above scripts can be computationally expensive, we also provide the option to download their outputs directly
    python download_data.py
    

Those scripts generate samples and compute their associated scores under the model for the different settings considered in our experiments, the data is saved in the new directory data.

Reproducing the experiments of the paper

First, for our three experiments, we compute KSD values to be used for the parametric bootstrap and save them in the directory parametric. This can be done by running

python generate_parametric.py

For convenience, we directly provide the directory parametric obtained by running this script.

To run the three experiments, the following commands can be executed

python experiment_gamma.py 
python experiment_rbm.py 
python experiment_nf.py 

Those commands run all the tests necessary for our experiments, the results are saved in dedicated .csv and .pkl files in the directory results (which is already provided for ease of use). Note that our expeiments are comprised of 'embarrassingly parallel for loops', for which significant speed up can be obtained by using parallel computing libraries such as joblib or dask.

The actual figures of the paper can be obtained from the saved dataframes in results by using the command

python figures.py  

The figures are saved in the directory figures and correspond to the ones used in our paper.

References

Our KSDAgg code is based our MMDAgg implementation which can be found at https://github.com/antoninschrab/mmdagg-paper.

For the Gaussian-Bernoulli Restricted Boltzmann Machine experiment, we obtain the samples and scores in generate_data_rbm.py by relying on Wittawat Jitkrittum's implementation which can be found at https://github.com/wittawatj/kernel-gof under the MIT License. The relevant files we use are in the directory kgof.

For the MNIST Normalizing Flow experiment, we use in generate_data_nf.py a multiscale Normalizing Flow trained on the MNIST dataset as implemented by Phillip Lippe in Tutorial 11: Normalizing Flows for image modeling as part of the UvA Deep Learning Tutorials under the MIT License.

Author

Antonin Schrab

Centre for Artificial Intelligence, Department of Computer Science, University College London

Gatsby Computational Neuroscience Unit, University College London

Inria, Lille - Nord Europe research centre and Inria London Programme

Bibtex

@unpublished{schrab2022ksd,
    title={{KSD} Aggregated Goodness-of-fit Test},
    author={Antonin Schrab and Benjamin Guedj and Arthur Gretton},
    year={2022},
    note = "Submitted.",
    abstract = {We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide theoretical guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art adaptive KSD-based goodness-of-fit testing procedures.},
    url = {https://arxiv.org/abs/2202.00824},
    url_PDF = {https://arxiv.org/pdf/2202.00824.pdf},
    url_Code = {https://github.com/antoninschrab/ksdagg-paper},
    eprint={2202.00824},
    archivePrefix={arXiv},
    primaryClass={stat.ML}
}

License

MIT License (see LICENSE.md)

Owner
Antonin Schrab
Antonin Schrab
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022