Prototypical Networks for Few shot Learning in PyTorch

Overview

Prototypical Networks for Few shot Learning in PyTorch

Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code) in PyTorch.

Prototypical Networks

As shown in the reference paper Prototypical Networks are trained to embed samples features in a vectorial space, in particular, at each episode (iteration), a number of samples for a subset of classes are selected and sent through the model, for each subset of class c a number of samples' features (n_support) are used to guess the prototype (their barycentre coordinates in the vectorial space) for that class, so then the distances between the remaining n_query samples and their class barycentre can be minimized.

Prototypical Networks

T-SNE

After training, you can compute the t-SNE for the features generated by the model (not done in this repo, more infos about t-SNE here), this is a sample as shown in the paper.

Reference Paper t-SNE

Omniglot Dataset

Kudos to @ludc for his contribute: https://github.com/pytorch/vision/pull/46. We will use the official dataset when it will be added to torchvision if it doesn't imply big changes to the code.

Dataset splits

We implemented the Vynials splitting method as in [Matching Networks for One Shot Learning]. That sould be the same method used in the paper (in fact I download the split files from the "offical" repo). We then apply the same rotations there described. In this way we should be able to compare results obtained by running this code with results described in the reference paper.

Prototypical Batch Sampler

As described in its PyDoc, this class is used to generate the indexes of each batch for a prototypical training algorithm.

In particular, the object is instantiated by passing the list of the labels for the dataset, the sampler infers then the total number of classes and creates a set of indexes for each class ni the dataset. At each episode the sampler selects n_classes random classes and returns a number (n_support + n_query) of samples indexes for each one of the selected classes.

Prototypical Loss

Compute the loss as in the cited paper, mostly inspired by this code by one of its authors.

In prototypical_loss.py both loss function and loss class à la PyTorch are implemented.

The function takes in input the batch input from the model, samples' ground truths and the number n_suppport of samples to be used as support samples. Episode classes get infered from the target list, n_support samples get randomly extracted for each class, their class barycentres get computed, as well as the distances of each remaining samples' embedding from each class barycentre and the probability of each sample of belonging to each episode class get finmally computed; then the loss is then computed from the wrong predictions probabilities (for the query samples) as usual in classification problems.

Training

Please note that the training code is here just for demonstration purposes.

To train the Protonet on this task, cd into this repo's src root folder and execute:

$ python train.py

The script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • nepochs: number of epochs to train for, default to 100

  • learning_rate: learning rate for the model, default to 0.001

  • lr_scheduler_step: StepLR learning rate scheduler step, default to 20

  • lr_scheduler_gamma: StepLR learning rate scheduler gamma, default to 0.5

  • iterations: number of episodes per epoch. default to 100

  • classes_per_it_tr: number of random classes per episode for training. default to 60

  • num_support_tr: number of samples per class to use as support for training. default to 5

  • num_query_tr: nnumber of samples per class to use as query for training. default to 5

  • classes_per_it_val: number of random classes per episode for validation. default to 5

  • num_support_val: number of samples per class to use as support for validation. default to 5

  • num_query_val: number of samples per class to use as query for validation. default to 15

  • manual_seed: input for the manual seeds initializations, default to 7

  • cuda: enables cuda (store True)

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Performances

We are trying to reproduce the reference paper performaces, we'll update here our best results.

Model 1-shot (5-way Acc.) 5-shot (5-way Acc.) 1 -shot (20-way Acc.) 5-shot (20-way Acc.)
Reference Paper 98.8% 99.7% 96.0% 98.9%
This repo 98.5%** 99.6%* 95.1%° 98.6%°°

* achieved using default parameters (using --cuda option)

** achieved running python train.py --cuda -nsTr 1 -nsVa 1

° achieved running python train.py --cuda -nsTr 1 -nsVa 1 -cVa 20

°° achieved running python train.py --cuda -nsTr 5 -nsVa 5 -cVa 20

Helpful links

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/SnellSZ17,
  author    = {Jake Snell and
               Kevin Swersky and
               Richard S. Zemel},
  title     = {Prototypical Networks for Few-shot Learning},
  journal   = {CoRR},
  volume    = {abs/1703.05175},
  year      = {2017},
  url       = {http://arxiv.org/abs/1703.05175},
  archivePrefix = {arXiv},
  eprint    = {1703.05175},
  timestamp = {Wed, 07 Jun 2017 14:41:38 +0200},
  biburl    = {http://dblp.org/rec/bib/journals/corr/SnellSZ17},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Owner
Orobix
Orobix
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022