Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

Overview

SentiBERT

Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/2005.04114

Model Architecture

Requirements

Environment

* Python == 3.6.10
* Pytorch == 1.1.0
* CUDA == 9.0.176
* NVIDIA GeForce GTX 1080 Ti
* HuggingFaces Pytorch (also known as pytorch-pretrained-bert & transformers)
* Stanford CoreNLP (stanford-corenlp-full-2018-10-05)
* Numpy, Pickle, Tqdm, Scipy, etc. (See requirements.txt)

Datasets

Datasets include:

* SST-phrase
* SST-5 (almost the same with SST-phrase)
* SST-3 (almost the same with SST-phrase)
* SST-2
* Twitter Sentiment Analysis (SemEval 2017 Task 4)
* EmoContext (SemEval 2019 Task 3)
* EmoInt (Joy, Fear, Sad, Anger) (SemEval 2018 Task 1c)

Note that there are no individual datasets for SST-5. When evaluating SST-phrase, the results for SST-5 should also appear.

File Architecture (Selected important files)

-- /examples/run_classifier_new.py                                  ---> start to train
-- /examples/run_classifier_dataset_utils_new.py                    ---> input preprocessed files to SentiBERT
-- /pytorch-pretrained-bert/modeling_new.py                         ---> detailed model architecture
-- /examples/lm_finetuning/pregenerate_training_data_sstphrase.py   ---> generate pretrained epochs
-- /examples/lm_finetuning/finetune_on_pregenerated_sstphrase.py    ---> pretrain on generated epochs
-- /preprocessing/xxx_st.py                                         ---> preprocess raw text and constituency tree
-- /datasets                                                        ---> datasets
-- /transformers (under construction)                               ---> RoBERTa part

Get Started

Preparing Environment

conda create -n sentibert python=3.6.10
conda activate sentibert

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

cd SentiBERT/

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip
unzip stanford-corenlp-full-2018-10-05.zip

export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/pytorch_pretrained_bert
export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/
export PYTHONPATH=$PYTHONPATH:XX/

Preprocessing

  1. Split the raw text and golden labels of sentiment/emotion datasets into xxx_train\dev\test.txt and xxx_train\dev\test_label.npy, assuming that xxx represents task name.
  2. Obtain tree information. There are totally three situtations.
  • For tasks except SST-phrase, SST-2,3,5, put the files into xxx_train\test.txt files into /stanford-corenlp-full-2018-10-05/. To get binary sentiment constituency trees, please run
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file xxx_train\test.txt -outputFormat json -ssplit.eolonly true -tokenize.whitespace true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/xxx_train\test.txt.json.

  • For SST-2, please use
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file sst2_train\dev_text.txt -outputFormat json -ssplit.eolonly true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/sst2_train\dev_text.txt.json.

  • For SST-phrase and SST-3,5, the tree information was already stored in sstphrase_train\test.txt.
  1. Run /datasets/xxx/xxx_st.py to clean, and store the text and label information in xxx_train\dev\test_text_new.txt and xxx_label_train\dev\test.npy. It also transforms the tree structure into matrices /datasets/xxx/xxx_train\dev\test_span.npy and /datasets/xxx/xxx_train\dev\test_span_3.npy. The first matrix is used as the range of constituencies in the first layer of our attention mechanism. The second matrix is used as the indices of each constituency's children nodes or subwords and itself in the second layer. Specifically, for tasks other than EmoInt, SST-phrase, SST-5 and SST-3, the command is like below:
cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train", "test" or "dev"

For EmoInt, the command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train" or "test"
        --domain joy                                        ---> "joy", "sad", "fear" or "anger". Used in EmoInt task

For SST-phrase, SST-5 and SST-3, since they already have tree information in sstphrase_train\test.txt. In this case, tree_dir should be /datasets/sstphrase/ or /datasets/sst-3/. The command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /datasets/xxx/ \                         ---> the location of unpreprocessed tree information    
        --stage train \                                     ---> "train" or "test"

Pretraining

  1. Generate epochs for preparation
cd /examples/lm_finetuning

python3 pregenerate_training_data_sstphrase.py \
        --train_corpus /datasets/sstphrase/sstphrase_train_text_new.txt \
        --data_dir /datasets/sstphrase/ \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /training_sstphrase \
        --epochs_to_generate 3 \
        --max_seq_len 128 \
  1. Pretrain the generated epochs
CUDA_VISIBLE_DEVICES=7 python3 finetune_on_pregenerated_sstphrase.py \
        --pregenerated_data /training_sstphrase \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /results/sstphrase_pretrain \
        --epochs 3

The pre-trained parameters were released here. [Google Drive]

Fine-tuning

Run run_classifier_new.py directly as follows:

cd /examples

CUDA_VISIBLE_DEVICES=7 python run_classifier_new.py \
  --task_name xxx \                              ---> task name
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir /datasets/xxx \                     ---> the same name as task_name
  --pretrain_dir /results/sstphrase_pretrain \   ---> the location of pre-trained parameters
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size xxx \
  --learning_rate xxx \
  --num_train_epochs xxx \                                                          
  --domain xxx \                                 ---> "joy", "sad", "fear" or "anger". Used in EmoInt task
  --output_dir /results/xxx \                    ---> the same name as task_name
  --seed xxx \
  --para xxx                                     ---> "sentibert" or "bert": pretrained SentiBERT or BERT

Checkpoints

For reproducity and usability, we provide checkpoints and the original training settings to help you reproduce: Link of overall result folder: [Google Drive]

The implementation details and results are shown below:

Note: 1) BERT denotes BERT w/ Mean pooling. 2) The results of subtasks in EmoInt is (Joy: 68.90, 65.18, 4 epochs), (Anger: 68.17, 66.73, 4 epochs), (Sad: 66.25, 63.08, 5 epochs), (Fear: 65.49, 64.79, 5 epochs), respectively.

Models Batch Size Learning Rate Epochs Seed Results
SST-phrase
SentiBERT 32 2e-5 5 30 **68.98**
BERT* 32 2e-5 5 30 65.22
SST-5
SentiBERT 32 2e-5 5 30 **56.04**
BERT* 32 2e-5 5 30 50.23
SST-2
SentiBERT 32 2e-5 1 30 **93.25**
BERT 32 2e-5 1 30 92.08
SST-3
SentiBERT 32 2e-5 5 77 **77.34**
BERT* 32 2e-5 5 77 73.35
EmoContext
SentiBERT 32 2e-5 1 0 **74.47**
BERT 32 2e-5 1 0 73.64
EmoInt
SentiBERT 16 2e-5 4 or 5 77 **67.20**
BERT 16 2e-5 4 or 5 77 64.95
Twitter
SentiBERT 32 6e-5 1 45 **70.2**
BERT 32 6e-5 1 45 69.7

Analysis

Here we provide analysis implementation in our paper. We will focus on the evaluation of

  • local difficulty
  • global difficulty
  • negation
  • contrastive relation

In preprocessing part, we provide implementation to extract related information in the test set of SST-phrase and store them in

-- /datasets/sstphrase/swap_test_new.npy                   ---> global difficulty
-- /datasets/sstphrase/edge_swap_test_new.npy              ---> local difficulty
-- /datasets/sstphrase/neg_new.npy                         ---> negation
-- /datasets/sstphrase/but_new.npy                         ---> contrastive relation

In simple_accuracy_phrase(), we will provide statistical details and evaluate for each metric.

Some of the analysis results based on our provided checkpoints are selected and shown below:

Models Results
Local Difficulty
SentiBERT **[85.39, 60.80, 49.40]**
BERT* [83.00, 55.54, 31.97]
Negation
SentiBERT **[78.45, 76.25, 70.56]**
BERT* [75.04, 71.40, 68.77]
Contrastive Relation
SentiBERT **39.87**
BERT* 28.48

Acknowledgement

Here we would like to thank for BERT/RoBERTa implementation of HuggingFace and sentiment tree parser of Stanford CoreNLP. Also, thanks for the dataset release of SemEval. To confirm the privacy rule of SemEval task organizer, we only choose the publicable datasets of each task.

Citation

Please cite our ACL paper if this repository inspired your work.

@inproceedings{yin2020sentibert,
  author    = {Yin, Da and Meng, Tao and Chang, Kai-Wei},
  title     = {{SentiBERT}: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics, {ACL} 2020, Seattle, USA},
  year      = {2020},
}

Contact

  • Due to the difference of environment, the results will be a bit different. If you have any questions regarding the code, please create an issue or contact the owner of this repository.
Owner
Da Yin
Da Yin
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022