Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

Overview

SentiBERT

Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/2005.04114

Model Architecture

Requirements

Environment

* Python == 3.6.10
* Pytorch == 1.1.0
* CUDA == 9.0.176
* NVIDIA GeForce GTX 1080 Ti
* HuggingFaces Pytorch (also known as pytorch-pretrained-bert & transformers)
* Stanford CoreNLP (stanford-corenlp-full-2018-10-05)
* Numpy, Pickle, Tqdm, Scipy, etc. (See requirements.txt)

Datasets

Datasets include:

* SST-phrase
* SST-5 (almost the same with SST-phrase)
* SST-3 (almost the same with SST-phrase)
* SST-2
* Twitter Sentiment Analysis (SemEval 2017 Task 4)
* EmoContext (SemEval 2019 Task 3)
* EmoInt (Joy, Fear, Sad, Anger) (SemEval 2018 Task 1c)

Note that there are no individual datasets for SST-5. When evaluating SST-phrase, the results for SST-5 should also appear.

File Architecture (Selected important files)

-- /examples/run_classifier_new.py                                  ---> start to train
-- /examples/run_classifier_dataset_utils_new.py                    ---> input preprocessed files to SentiBERT
-- /pytorch-pretrained-bert/modeling_new.py                         ---> detailed model architecture
-- /examples/lm_finetuning/pregenerate_training_data_sstphrase.py   ---> generate pretrained epochs
-- /examples/lm_finetuning/finetune_on_pregenerated_sstphrase.py    ---> pretrain on generated epochs
-- /preprocessing/xxx_st.py                                         ---> preprocess raw text and constituency tree
-- /datasets                                                        ---> datasets
-- /transformers (under construction)                               ---> RoBERTa part

Get Started

Preparing Environment

conda create -n sentibert python=3.6.10
conda activate sentibert

conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch

cd SentiBERT/

wget http://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip
unzip stanford-corenlp-full-2018-10-05.zip

export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/pytorch_pretrained_bert
export PYTHONPATH=$PYTHONPATH:XX/SentiBERT/
export PYTHONPATH=$PYTHONPATH:XX/

Preprocessing

  1. Split the raw text and golden labels of sentiment/emotion datasets into xxx_train\dev\test.txt and xxx_train\dev\test_label.npy, assuming that xxx represents task name.
  2. Obtain tree information. There are totally three situtations.
  • For tasks except SST-phrase, SST-2,3,5, put the files into xxx_train\test.txt files into /stanford-corenlp-full-2018-10-05/. To get binary sentiment constituency trees, please run
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file xxx_train\test.txt -outputFormat json -ssplit.eolonly true -tokenize.whitespace true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/xxx_train\test.txt.json.

  • For SST-2, please use
cd /stanford-corenlp-full-2018-10-05
java -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,parse,sentiment -file sst2_train\dev_text.txt -outputFormat json -ssplit.eolonly true

The tree information will be stored in /stanford-corenlp-full-2018-10-05/sst2_train\dev_text.txt.json.

  • For SST-phrase and SST-3,5, the tree information was already stored in sstphrase_train\test.txt.
  1. Run /datasets/xxx/xxx_st.py to clean, and store the text and label information in xxx_train\dev\test_text_new.txt and xxx_label_train\dev\test.npy. It also transforms the tree structure into matrices /datasets/xxx/xxx_train\dev\test_span.npy and /datasets/xxx/xxx_train\dev\test_span_3.npy. The first matrix is used as the range of constituencies in the first layer of our attention mechanism. The second matrix is used as the indices of each constituency's children nodes or subwords and itself in the second layer. Specifically, for tasks other than EmoInt, SST-phrase, SST-5 and SST-3, the command is like below:
cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train", "test" or "dev"

For EmoInt, the command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /stanford-corenlp-full-2018-10-05/ \     ---> the location of unpreprocessed tree information (usually in Stanford CoreNLP repo)
        --stage train \                                     ---> "train" or "test"
        --domain joy                                        ---> "joy", "sad", "fear" or "anger". Used in EmoInt task

For SST-phrase, SST-5 and SST-3, since they already have tree information in sstphrase_train\test.txt. In this case, tree_dir should be /datasets/sstphrase/ or /datasets/sst-3/. The command is shown below:

cd /preprocessing

python xxx_st.py \
        --data_dir /datasets/xxx/ \                         ---> the location where you want to store preprocessed text, label and tree information 
        --tree_dir /datasets/xxx/ \                         ---> the location of unpreprocessed tree information    
        --stage train \                                     ---> "train" or "test"

Pretraining

  1. Generate epochs for preparation
cd /examples/lm_finetuning

python3 pregenerate_training_data_sstphrase.py \
        --train_corpus /datasets/sstphrase/sstphrase_train_text_new.txt \
        --data_dir /datasets/sstphrase/ \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /training_sstphrase \
        --epochs_to_generate 3 \
        --max_seq_len 128 \
  1. Pretrain the generated epochs
CUDA_VISIBLE_DEVICES=7 python3 finetune_on_pregenerated_sstphrase.py \
        --pregenerated_data /training_sstphrase \
        --bert_model bert-base-uncased \
        --do_lower_case \
        --output_dir /results/sstphrase_pretrain \
        --epochs 3

The pre-trained parameters were released here. [Google Drive]

Fine-tuning

Run run_classifier_new.py directly as follows:

cd /examples

CUDA_VISIBLE_DEVICES=7 python run_classifier_new.py \
  --task_name xxx \                              ---> task name
  --do_train \
  --do_eval \
  --do_lower_case \
  --data_dir /datasets/xxx \                     ---> the same name as task_name
  --pretrain_dir /results/sstphrase_pretrain \   ---> the location of pre-trained parameters
  --bert_model bert-base-uncased \
  --max_seq_length 128 \
  --train_batch_size xxx \
  --learning_rate xxx \
  --num_train_epochs xxx \                                                          
  --domain xxx \                                 ---> "joy", "sad", "fear" or "anger". Used in EmoInt task
  --output_dir /results/xxx \                    ---> the same name as task_name
  --seed xxx \
  --para xxx                                     ---> "sentibert" or "bert": pretrained SentiBERT or BERT

Checkpoints

For reproducity and usability, we provide checkpoints and the original training settings to help you reproduce: Link of overall result folder: [Google Drive]

The implementation details and results are shown below:

Note: 1) BERT denotes BERT w/ Mean pooling. 2) The results of subtasks in EmoInt is (Joy: 68.90, 65.18, 4 epochs), (Anger: 68.17, 66.73, 4 epochs), (Sad: 66.25, 63.08, 5 epochs), (Fear: 65.49, 64.79, 5 epochs), respectively.

Models Batch Size Learning Rate Epochs Seed Results
SST-phrase
SentiBERT 32 2e-5 5 30 **68.98**
BERT* 32 2e-5 5 30 65.22
SST-5
SentiBERT 32 2e-5 5 30 **56.04**
BERT* 32 2e-5 5 30 50.23
SST-2
SentiBERT 32 2e-5 1 30 **93.25**
BERT 32 2e-5 1 30 92.08
SST-3
SentiBERT 32 2e-5 5 77 **77.34**
BERT* 32 2e-5 5 77 73.35
EmoContext
SentiBERT 32 2e-5 1 0 **74.47**
BERT 32 2e-5 1 0 73.64
EmoInt
SentiBERT 16 2e-5 4 or 5 77 **67.20**
BERT 16 2e-5 4 or 5 77 64.95
Twitter
SentiBERT 32 6e-5 1 45 **70.2**
BERT 32 6e-5 1 45 69.7

Analysis

Here we provide analysis implementation in our paper. We will focus on the evaluation of

  • local difficulty
  • global difficulty
  • negation
  • contrastive relation

In preprocessing part, we provide implementation to extract related information in the test set of SST-phrase and store them in

-- /datasets/sstphrase/swap_test_new.npy                   ---> global difficulty
-- /datasets/sstphrase/edge_swap_test_new.npy              ---> local difficulty
-- /datasets/sstphrase/neg_new.npy                         ---> negation
-- /datasets/sstphrase/but_new.npy                         ---> contrastive relation

In simple_accuracy_phrase(), we will provide statistical details and evaluate for each metric.

Some of the analysis results based on our provided checkpoints are selected and shown below:

Models Results
Local Difficulty
SentiBERT **[85.39, 60.80, 49.40]**
BERT* [83.00, 55.54, 31.97]
Negation
SentiBERT **[78.45, 76.25, 70.56]**
BERT* [75.04, 71.40, 68.77]
Contrastive Relation
SentiBERT **39.87**
BERT* 28.48

Acknowledgement

Here we would like to thank for BERT/RoBERTa implementation of HuggingFace and sentiment tree parser of Stanford CoreNLP. Also, thanks for the dataset release of SemEval. To confirm the privacy rule of SemEval task organizer, we only choose the publicable datasets of each task.

Citation

Please cite our ACL paper if this repository inspired your work.

@inproceedings{yin2020sentibert,
  author    = {Yin, Da and Meng, Tao and Chang, Kai-Wei},
  title     = {{SentiBERT}: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics, {ACL} 2020, Seattle, USA},
  year      = {2020},
}

Contact

  • Due to the difference of environment, the results will be a bit different. If you have any questions regarding the code, please create an issue or contact the owner of this repository.
Owner
Da Yin
Da Yin
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022