HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Overview

Class HiddenMarkovModel

HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0

Installation

pip install --upgrade git+https://gitlab.com/kesmarag/hmm-gmm-tf2
HiddenMarkovModel(p0, tp, em_w, em_mu, em_var)
Args:
  p0: 1D numpy array
    Determines the probability of the first hidden variable
    in the Markov chain for each hidden state.
    e.g. np.array([0.5, 0.25, 0.25]) (3 hidden states)
  tp: 2D numpy array
    Determines the transition probabilities for moving from one hidden state to each
    other. The (i,j) element of the matrix denotes the probability of
    transiting from i-th state to the j-th state.
    e.g. np.array([[0.80, 0.15, 0.05],
                   [0.20, 0.55, 0.25],
                   [0.15, 0.15, 0.70]])
    (3 hidden states)
  em_w: 2D numpy array
    Contains the weights of the Gaussian mixtures.
    Each line correspond to a hidden state.
    e.g. np.array([[0.8, 0.2],
                   [0.5, 0.5],
                   [0.1, 0.9]])
    (3 hidden states, 2 Gaussian mixtures)
  em_mu: 3D numpy array
    Determines the mean value vector for each component
    of the emission distributions.
    The first dimension refers to the hidden states whereas the
    second one refer to the mixtures.
    e.g. np.array([[[2.2, 1.3], [1.2, 0.2]],    1st hidden state
                   [[1.3, 5.0], [4.3, -2.3]],   2nd hidden state
                   [[0.0, 1.2], [0.4, -2.0]]])  3rd hidden state
    (3 hidden states, 2 Gaussian mixtures)
  em_var: 3D numpy array
    Determines the variance vector for each component of the
    emission distributions.
    e.g. np.array([[[2.2, 1.3], [1.2, 0.2]],    1st hidden state
                    [[1.3, 5.0], [4.3, -2.3]],   2nd hidden state
                    [[0.0, 1.2], [0.4, -2.0]]])  3rd hidden state
    (3 hidden states, 2 Gaussian mixtures)

log_posterior

HiddenMarkovModel.log_posterior(self, data)
Log probability density function.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time interval.
    The third dimension refers to the values of the observed data.

Returns:
  1D numpy array with the values of the log-probability function with respect to the observations.

viterbi_algorithm

HiddenMarkovModel.viterbi_algorithm(self, data)
Performs the viterbi algorithm for calculating the most probable
hidden state path of some batch data.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time interval.
    The third dimension refers to the values of the observed data.

Returns:
  2D numpy array with the most probable hidden state paths.
    The first dimension refers to each component of the batch.
    The second dimension the order of the hidden states.
    (0, 1, ..., K-1), where K is the total number of hidden states.

fit

HiddenMarkovModel.fit(self, data, max_iter=100, min_var=0.01, verbose=False)
This method re-adapts the model parameters with respect to a batch of
observations, using the Expectation-Maximization (E-M) algorithm.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time step.
    The third dimension refers to the values of the observed data.
  max_iter: positive integer number
    The maximum number of iterations.
  min_var: non-negative real value
    The minimum acceptance variance. We use this restriction
    in order to prevent overfitting of the model.

Returns:
  1D numpy array with the log-posterior probability densities for each training iteration.

generate

HiddenMarkovModel.generate(self, length, num_series=1, p=0.2)
Generates a batch of time series using an importance sampling like approach.

Args:
  length: positive integer
    The length of each time series.
  num_series: positive integer (default 1)
    The number of the time series.
  p: real value between 0.0 and 1.0 (default 0.2)
    The importance sampling parameter.
    At each iteration:
  k[A] Draw X and calculate p(X)
      if p(X) > p(X_{q-1}) then
        accept X as X_q
      else
        draw r from [0,1] using the uniform distribution.
        if r > p then
          accept the best of the rejected ones.
        else
          go to [A]

Returns:
  3D numpy array with the drawn time series.
  2D numpy array with the corresponding hidden states.

kl_divergence

HiddenMarkovModel.kl_divergence(self, other, data)
Estimates the value of the Kullback-Leibler divergence (KLD)
between the model and another model with respect to some data.

Example

import numpy as np
from kesmarag.hmm import HiddenMarkovModel, new_left_to_right_hmm, store_hmm, restore_hmm, toy_example
dataset = toy_example()

This helper function creates a test dataset with a single two dimensional time series with 700 samples.

The first 200 samples corresponds to a Gaussian mixture with 

    w1 = 0.6, w2=0.4
    mu1 = [0.5, 1], mu2 = [2, 1]
    var1 = [1, 1], var2=[1.2, 1]

the next 300 corresponds to a Gaussian mixture with

    w1 = 0.6, w2=0.4
    mu1 = [2, 5], mu2 = [4, 5]
    var1 = [0.8, 1], var2=[0.8, 1]

and the last 200 corresponds to a Gaussian mixture with

    w1 = 0.6, w2=0.4
    mu1 = [4, 1], mu2 = [6, 5]
    var1 = [1, 1], var2=[0.8, 1.2]
print(dataset.shape)
(1, 700, 2)
model = new_left_to_right_hmm(states=3, mixtures=2, data=dataset)
model.fit(dataset, verbose=True)
epoch:   0 , ln[p(X|λ)] = -3094.3748904062295
epoch:   1 , ln[p(X|λ)] = -2391.3602228316568
epoch:   2 , ln[p(X|λ)] = -2320.1563724302564
epoch:   3 , ln[p(X|λ)] = -2284.996645965759
epoch:   4 , ln[p(X|λ)] = -2269.0055909790053
epoch:   5 , ln[p(X|λ)] = -2266.1395773469876
epoch:   6 , ln[p(X|λ)] = -2264.4267494952455
epoch:   7 , ln[p(X|λ)] = -2263.156612481979
epoch:   8 , ln[p(X|λ)] = -2262.2725752851293
epoch:   9 , ln[p(X|λ)] = -2261.612564557431
epoch:  10 , ln[p(X|λ)] = -2261.102826808333
epoch:  11 , ln[p(X|λ)] = -2260.7189908960695
epoch:  12 , ln[p(X|λ)] = -2260.437608729253
epoch:  13 , ln[p(X|λ)] = -2260.231860238426
epoch:  14 , ln[p(X|λ)] = -2260.0784163526014
epoch:  15 , ln[p(X|λ)] = -2259.960659542152
epoch:  16 , ln[p(X|λ)] = -2259.8679640963023
epoch:  17 , ln[p(X|λ)] = -2259.793721328861
epoch:  18 , ln[p(X|λ)] = -2259.733658260372
epoch:  19 , ln[p(X|λ)] = -2259.684791553708
epoch:  20 , ln[p(X|λ)] = -2259.6448728507144
epoch:  21 , ln[p(X|λ)] = -2259.6121181368353
epoch:  22 , ln[p(X|λ)] = -2259.5850765029527





[-3094.3748904062295,
 -2391.3602228316568,
 -2320.1563724302564,
 -2284.996645965759,
 -2269.0055909790053,
 -2266.1395773469876,
 -2264.4267494952455,
 -2263.156612481979,
 -2262.2725752851293,
 -2261.612564557431,
 -2261.102826808333,
 -2260.7189908960695,
 -2260.437608729253,
 -2260.231860238426,
 -2260.0784163526014,
 -2259.960659542152,
 -2259.8679640963023,
 -2259.793721328861,
 -2259.733658260372,
 -2259.684791553708,
 -2259.6448728507144,
 -2259.6121181368353,
 -2259.5850765029527]
print(model)
### [kesmarag.hmm.HiddenMarkovModel] ###

=== Prior probabilities ================

[1. 0. 0.]

=== Transition probabilities ===========

[[0.995    0.005    0.      ]
 [0.       0.996666 0.003334]
 [0.       0.       1.      ]]

=== Emission distributions =============

*** Hidden state #1 ***

--- Mixture #1 ---
weight : 0.779990073797613
mean_values : [0.553266 1.155844]
variances : [1.000249 0.967666]

--- Mixture #2 ---
weight : 0.22000992620238702
mean_values : [2.598735 0.633391]
variances : [1.234133 0.916872]

*** Hidden state #2 ***

--- Mixture #1 ---
weight : 0.5188217626642593
mean_values : [2.514082 5.076246]
variances : [1.211327 0.903328]

--- Mixture #2 ---
weight : 0.4811782373357407
mean_values : [3.080913 5.039015]
variances : [1.327171 1.152902]

*** Hidden state #3 ***

--- Mixture #1 ---
weight : 0.5700082256217439
mean_values : [4.03977  1.118112]
variances : [0.97422 1.00621]

--- Mixture #2 ---
weight : 0.429991774378256
mean_values : [6.162698 5.064422]
variances : [0.753987 1.278449]
store_hmm(model, 'test_model.npz')
load_model = restore_hmm('test_model.npz')
gen_data = model.generate(700, 10, 0.05)
0 -2129.992044055025
1 -2316.443344656749
2 -2252.206072731434
3 -2219.667047368621
4 -2206.6760352374367
5 -2190.952289092368
6 -2180.0268345326112
7 -2353.7153702977475
8 -2327.955163192414
9 -2227.4471755146196
print(gen_data)
(array([[[-0.158655,  0.117973],
        [ 4.638243,  0.249049],
        [ 0.160007,  1.079808],
        ...,
        [ 4.671152,  4.18109 ],
        [ 2.121958,  3.747366],
        [ 2.572435,  6.352445]],

       [[-0.158655,  0.117973],
        [-1.379849,  0.998761],
        [-0.209945,  0.947926],
        ...,
        [ 3.93909 ,  1.383347],
        [ 5.356786,  1.57808 ],
        [ 5.0488  ,  5.586755]],

       [[-0.158655,  0.117973],
        [ 1.334   ,  0.979797],
        [ 3.708721,  1.321735],
        ...,
        [ 3.819756,  0.78794 ],
        [ 6.53362 ,  4.177215],
        [ 7.410012,  6.30113 ]],

       ...,

       [[-0.158655,  0.117973],
        [-0.152573,  0.612675],
        [-0.917723, -0.632936],
        ...,
        [ 4.110186, -0.027864],
        [ 2.82694 ,  0.65438 ],
        [ 6.825696,  5.27543 ]],

       [[-0.158655,  0.117973],
        [ 3.141896,  0.560984],
        [ 2.552211, -0.223568],
        ...,
        [ 4.41791 , -0.430231],
        [ 2.525892, -0.64211 ],
        [ 5.52568 ,  6.313566]],

       [[-0.158655,  0.117973],
        [ 0.845694,  2.436781],
        [ 1.564802, -0.652546],
        ...,
        [ 2.33009 ,  0.932121],
        [ 7.095326,  6.339674],
        [ 3.748988,  2.25159 ]]]), array([[0., 0., 0., ..., 1., 1., 1.],
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.],
       ...,
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.]]))
Owner
Susara Thenuwara
AI + Web Backend Engineer, image processing
Susara Thenuwara
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Synthetic dataset rendering Framework for producing the synthetic datasets used in: How Useful is Self-Supervised Pretraining for Visual Tasks? Alejan

Princeton Vision & Learning Lab 21 Apr 29, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022