Code to generate datasets used in "How Useful is Self-Supervised Pretraining for Visual Tasks?"

Overview

Synthetic dataset rendering

Framework for producing the synthetic datasets used in:

How Useful is Self-Supervised Pretraining for Visual Tasks?
Alejandro Newell and Jia Deng. CVPR, 2020. arXiv:2003.14323

Experiment code can be found here.

This is a general purpose synthetic setting supporting single-object or multi-object images providing annotations for object classification, object pose estimation, segmentation, and depth estimation.

Setup

Download and set up Blender 2.80 (this code has not been tested on more recent Blender versions).

Blender uses its own Python, to which we need to add an extra package. In the Blender installation, find the python directory and run:

cd path/to/blender/2.80/python/bin
./python3.7m -m ensure pip
./pip3 install gin_config

For distributed rendering and additional dataset prep, use your own Python installation (not the Blender version). Everything was tested with Python 3.7 and the following extra packages:

sudo apt install libopenexr-dev
pip install ray ray[tune] h5py openexr scikit-image

External data

Download ShapeNetCore.v2 and DTD.

By default, it is assumed external datasets will be placed in syn_benchmark/datasets (e.g. syn_benchmark/datasets/ShapeNetCore.v2). If this is not the case, change any paths as necessary in paths.py.

Dataset Generation

Try a test run with:

blender --background --python render.py -- -d test_dataset

The argument -d, --dataset_name specifies the output directory which will be placed in the directory defined by pahs.DATA_DIR. Dataset settings can be modified either by selecting a gin config file (-g) or by modifying parameters (-p), for example:

blender --background --python render.py -- -g render_multi
blender --background --python render.py -- -p "material.use_texture = False" "object.random_viewpoint = 0"
blender --background --python render.py -- -g render_multi -p "batch.num_samples = 100"

Manual arguments passed in through -p will override those in the provided gin file. Please check out config/render_single.gin to see what options can be modified.

Distributed rendering

To scale up dataset creation, rendering is split into smaller jobs that can be sent out to individual workers for parallelization on a single machine or on a cluster. The library Ray is used to manage workers automatically. This allows large-scale distributed, parallel processes which are easy to restart in case anything crashes.

Calling python distributed_render.py will by default produce small versions of the 12 single-object datasets used in the paper. Arguments are available to control the overall dataset size and to interface with Ray. The script can be modified as needed to produce individual datasets or to modify dataset properties (e.g. texture, lighting, etc).

To produce multi-object images with depth and segmentation ground truth, add the argument --is_multi.

Further processing

After running the rendering script, you will be left with a large number of individual files containing rendered images and metadata pertaining to class labels and other scene information. Before running the main experiment code it is important that this data is preprocessed.

There are two key steps:

  • consolidation of raw data to HDF5 datasets: python preprocess_data.py -d test_dataset -f
  • image resizing and preprocessing: python preprocess_data.py -d test_dataset -p

If working with EXR images produced for segmentation/depth data make sure to add the argument -e.

-f, --to_hdf5: The first step will move all image files and metadata into HDF5 dataset files.

An important step that occurs here is conversion of EXR data to PNG data. The EXR output from Blender contains both the rendered image and corresponding depth, instance segmentation, and semantic segmentation data. After running this script, the rendered image is stored as one PNG and the depth and segmentation channels are concatenated into another PNG image.

After this step, I recommend removing the original small files if disk space is a concern, all raw data is fully preserved in the img_XX.h5 files. Note, the data is stored as an encoded PNG, if you want to read the image into Python you can do the following:

f = h5py.File('path/to/your/dataset/imgs_00.h5', 'r')
img_idx = 0
png_data = f['png_images'][img_idx]

img = imageio.imread(io.BytesIO(png_data))
# or alternatively
img = util.img_read_and_resize(png_data)

-p, --preprocess: Once the raw data has been moved into HDF5 files, it can be quickly processed for use in experiments. This preprocessing simply takes care of steps that would otherwise be performed over and over again during training such as image resizing and normalization. One of the more expensive steps that is taken care of here is conversion to LAB color space.

This preprocessing step prepares a single HDF5 file which ready to be used with the experiment code. Unlike the files created in the previous step, this data has been processed and some information may be lost from the original images especially if they have been resized to a lower resolution.

Owner
Princeton Vision & Learning Lab
Princeton Vision & Learning Lab
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022