TigerLily: Finding drug interactions in silico with the Graph.

Overview

PyPI Version Docs Status Code Coverage Build Status Arxiv


Drug Interaction Prediction with Tigerlily

Documentation | Example Notebook | Youtube Video | Project Report

Tigerlily is a TigerGraph based system designed to solve the drug interaction prediction task. In this machine learning task, we want to predict whether two drugs have an adverse interaction. Our framework allows us to solve this highly relevant real-world problem using graph mining techniques in these steps:


(A) Creating and populating a Graph

As a first step, the basic TigerLily tools are imported, and we load the example dataset that integrated DrugBankDDI and the BioSNAP datasets. We create a PersonalizedPageRankMachine and connect to the host with the Graph. The settings of this machine should be the appropriate user credentials and details; a secret is obtained in the TigerGraph Graph Studio. We install the default Personalized PageRank query and upload the edges of the example dataset used in our demonstrations. This graph has drug and protein nodes, drug-protein and protein-protein interactions. Our goal is to predict the drug-drug interactions.

from tigerlily.dataset import ExampleDataset
from tigerlily.embedding import EmbeddingMachine
from tigerlily.operator import hadamard_operator
from tigerlily.pagerank import PersonalizedPageRankMachine

dataset = ExampleDataset()

edges = dataset.read_edges()
target = dataset.read_target()

machine = PersonalizedPageRankMachine(host="host_name",
                                      graphname="graph_name",
                                      username="username_value",
                                      secret="secret_value",
                                      password="password_value")
                           
machine.connect()
machine.install_query()

machine.upload_graph(new_graph=True, edges=edges)

(B) Computing the Approximate Personalized PageRank vectors

We are only interested in describing the neighbourhood of drug nodes in the biological graph. Because of this, we only retrieve the neighbourhood of the drugs - for each drug we retrieve those nodes (top-k closest neighbors) which are the closest based on the Personalized PageRank scores. We are going to learn the drug embeddings based on these scores.

drug_node_ids = machine.connection.getVertices("drug")

pagerank_scores = machine.get_personalized_pagerank(drug_node_ids)

(C) Learning the Drug Embeddings and Drug Pair Feature Generation

We create an embedding machine that creates drug node representations. The embedding machine instance has a random seed, a dimensions hyperparameter (this sets the number of factors), and a maximal iteration count for the factorization. An embedding is learned from the Personalized PageRank scores and using the drug features we create drug pair features with the operator function.

embedding_machine = EmbeddingMachine(seed=42,
                                     dimensions=32,
                                     max_iter=100)

embedding = embedding_machine.fit(pagerank_scores)

drug_pair_features = embedding_machine.create_features(target, hadamard_operator)

(D) Predicting Drug Interactions and Inference

We load a gradient boosting-based classifier, an evaluation metric for binary classification, and a function to create train-test splits. We create a train and test portion of the drug pairs using 80% of the pairs for training. A gradient boosted tree model is trained, score the model on the test set. We compute an AUROC score on the test portion of the dataset and print it out.

from lightgbm import LGBMClassifier
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(drug_pair_features,
                                                    target,
                                                    train_size=0.8,
                                                    random_state=42)

model = LGBMClassifier(learning_rate=0.01,
                       n_estimators=100)

model.fit(X_train,y_train["label"])

predicted_label = model.predict_proba(X_test)

auroc_score_value = roc_auc_score(y_test["label"], predicted_label[:,1])

print(f'AUROC score: {auroc_score_value :.4f}')

Head over to the documentation to find out more about installation and a full API reference. For a quick start, check out the example notebook. If you notice anything unexpected, please open an issue.


Citing

If you find Tigerlily useful in your research, please consider adding the following citation:

@misc{tigerlily2022,
  author = {Benedek Rozemberczki},
  title = {TigerLily: Finding drug interactions in silico with the Graph},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/benedekrozemberczki/tigerlily}},
}

Installation

To install tigerlily, simply run:

pip install tigerlily

Running tests

Running tests requires that you run:

$ tox -e py

License


Credit

The TigerLily logo and the high level machine learning workflow image are based on:

Benedek Rozemberczki has a yearly subscription to the Noun Project that allows the customization and commercial use of the icons.

You might also like...
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

Official code for
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

A simple API wrapper for Discord interactions.
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Releases(v0.1.0)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022