Image Segmentation and Object Detection in Pytorch

Overview

Image Segmentation and Object Detection in Pytorch

Pytorch-Segmentation-Detection is a library for image segmentation and object detection with reported results achieved on common image segmentation/object detection datasets, pretrained models and scripts to reproduce them.

Segmentation

PASCAL VOC 2012

Implemented models were tested on Restricted PASCAL VOC 2012 Validation dataset (RV-VOC12) or Full PASCAL VOC 2012 Validation dataset (VOC-2012) and trained on the PASCAL VOC 2012 Training data and additional Berkeley segmentation data for PASCAL VOC 12.

You can find all the scripts that were used for training and evaluation here.

This code has been used to train networks with this performance:

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link Related paper
Resnet-18-8s RV-VOC12 59.0 in prog. in prog. 28 ms. Dropbox DeepLab
Resnet-34-8s RV-VOC12 68.0 in prog. in prog. 50 ms. Dropbox DeepLab
Resnet-50-16s VOC12 66.5 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s VOC12 67.0 in prog. in prog. in prog. in prog. DeepLab
Resnet-50-8s-deep-sup VOC12 67.1 in prog. in prog. in prog. in prog. DeepLab
Resnet-101-16s VOC12 68.6 in prog. in prog. in prog. in prog. DeepLab
PSP-Resnet-18-8s VOC12 68.3 n/a n/a n/a in prog. PSPnet
PSP-Resnet-50-8s VOC12 73.6 n/a n/a n/a in prog. PSPnet

Some qualitative results:

Alt text

Endovis 2017

Implemented models were trained on Endovis 2017 segmentation dataset and the sequence number 3 was used for validation and was not included in training dataset.

The code to acquire the training and validating the model is also provided in the library.

Additional Qualitative results can be found on this youtube playlist.

Binary Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-9-8s Seq # 3 * 96.1 in prog. in prog. 13.3 ms. Dropbox
Resnet-18-8s Seq # 3 96.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog.

Resnet-9-8s network was tested on the 0.5 reduced resoulution (512 x 640).

Qualitative results (on validation sequence):

Alt text

Multi-class Segmentation

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-8s Seq # 3 81.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Seq # 3 in prog. in prog. in prog. 50 ms. in prog

Qualitative results (on validation sequence):

Alt text

Cityscapes

The dataset contains video sequences recorded in street scenes from 50 different cities, with high quality pixel-level annotations of 5 000 frames. The annotations contain 19 classes which represent cars, road, traffic signs and so on.

Model Test data Mean IOU Mean pix. accuracy Pixel accuracy Inference time (512x512 px. image) Model Download Link
Resnet-18-32s Validation set 61.0 in prog. in prog. in prog. in prog.
Resnet-18-8s Validation set 60.0 in prog. in prog. 28 ms. Dropbox
Resnet-34-8s Validation set 69.1 in prog. in prog. 50 ms. Dropbox
Resnet-50-16s-PSP Validation set 71.2 in prog. in prog. in prog. in prog.

Qualitative results (on validation sequence):

Whole sequence can be viewed here.

Alt text

Installation

This code requires:

  1. Pytorch.

  2. Some libraries which can be acquired by installing Anaconda package.

    Or you can install scikit-image, matplotlib, numpy using pip.

  3. Clone the library:

git clone --recursive https://github.com/warmspringwinds/pytorch-segmentation-detection

And use this code snippet before you start to use the library:

import sys
# update with your path
# All the jupyter notebooks in the repository already have this
sys.path.append("/your/path/pytorch-segmentation-detection/")
sys.path.insert(0, '/your/path/pytorch-segmentation-detection/vision/')

Here we use our pytorch/vision fork, which might be merged and futher merged in a future. We have added it as a submodule to our repository.

  1. Download segmentation or detection models that you want to use manually (links can be found below).

About

If you used the code for your research, please, cite the paper:

@article{pakhomov2017deep,
  title={Deep Residual Learning for Instrument Segmentation in Robotic Surgery},
  author={Pakhomov, Daniil and Premachandran, Vittal and Allan, Max and Azizian, Mahdi and Navab, Nassir},
  journal={arXiv preprint arXiv:1703.08580},
  year={2017}
}

During implementation, some preliminary experiments and notes were reported:

Owner
Daniil Pakhomov
Phd student at JHU. Research interests: Image Classification, Image Segmentation, Face Detection and Face Recognition mostly based on Deep Learning.
Daniil Pakhomov
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022