Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Overview

Incidents Dataset

See the following pages for more details:

  • Project page: IncidentsDataset.csail.mit.edu.
  • ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild" here.
  • Extended Paper "Incidents1M: a large-scale dataset of images with natural disasters, damage, and incidents" here.

Obtain the data

Please fill out this form and then email/notify [email protected] to request the data.

The data structure is in JSON with URLs and labels. The files are in the following form:

# single-label multi-class (ECCV 2020 version):
eccv_train.json
eccv_val.json

# multi-label multi-class (latest version):
multi_label_train.json
multi_label_val.json
  1. Download chosen JSON files and move to the data folder.

  2. Look at VisualizeDataset.ipynb to see the composition of the dataset files.

  3. Download the images at the URLs specified in the JSON files.

  4. Take note of image download location. This is param --images_path in parser.py.

Setup environment

git clone https://github.com/ethanweber/IncidentsDataset
cd IncidentsDataset

conda create -n incidents python=3.8.2
conda activate incidents
pip install -r requirements.txt

Using the Incident Model

  1. Download pretrained weights here. Place desired files in the pretrained_weights folder. Note that these take the following structure:

    # run this script to download everything
    python run_download_weights.py
    
    # pretrained weights with Places 365
    resnet18_places365.pth.tar
    resnet50_places365.pth.tar
    
    # ECCV baseline model weights
    eccv_baseline_model_trunk.pth.tar
    eccv_baseline_model_incident.pth.tar
    eccv_baseline_model_place.pth.tar
    
    # ECCV final model weights
    eccv_final_model_trunk.pth.tar
    eccv_final_model_incident.pth.tar
    eccv_final_model_place.pth.tar
    
    # multi-label final model weights
    multi_label_final_model_trunk.pth.tar
    multi_label_final_model_incident.pth.tar
    multi_label_final_model_place.pth.tar
    
  2. Run inference with the model with RunModel.ipynb.

  3. Compute mAP and report numbers.

    # test the model on the validation set
    python run_model.py \
        --config=configs/eccv_final_model \
        --mode=val \
        --checkpoint_path=pretrained_weights \
        --images_path=/path/to/downloaded/images/folder/
    
  4. Train a model.

    # train the model
    python run_model.py \
        --config=configs/eccv_final_model \
        --mode=train \
        --checkpoint_path=runs/eccv_final_model
    
    # visualize tensorboard
    tensorboard --samples_per_plugin scalars=100,images=10 --port 8880 --bind_all --logdir runs/eccv_final_model
    

    See the configs/ folder for more details.

Citation

If you find this work helpful for your research, please consider citing our paper:

@InProceedings{weber2020eccv,
  title={Detecting natural disasters, damage, and incidents in the wild},
  author={Weber, Ethan and Marzo, Nuria and Papadopoulos, Dim P. and Biswas, Aritro and Lapedriza, Agata and Ofli, Ferda and Imran, Muhammad and Torralba, Antonio},
  booktitle={The European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}

License

This work is licensed with the MIT License. See LICENSE for details.

Acknowledgements

This work is supported by the CSAIL-QCRI collaboration project and RTI2018-095232-B-C22 grant from the Spanish Ministry of Science, Innovation and Universities.

Owner
Ethan Weber
Currently PhD student at Berkeley. Previously EECS at MIT BS '20 & MEng '21.
Ethan Weber
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022