Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

Related tags

Deep Learningshindo
Overview

shindo.py

Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array

Introduction

Japan is a country known for frequent earthquake occurrence. A special scale to evaluate the seismic intensity called shindo (震度) have been defined by the Japan Meteorological Agency (JMA). Long ago, the shindo scale was determined by personnel who inspect the damaged area in person to observe the ratio of collapsed houses, etc. However, from a few decades ago, it was begun to calculate the shindo scale from digital acceleration data recorded by accelerometers. The shindo scale has levels from 0 to 7, where actually 5 and 6 are devided into 5-, 5+, 6-, and 6+. 0 is the weakest and 7 is the strongest. For example, the 1995 Hanshin-Awaji Earthquake (1.17) and the 2011 Great East Japan Earthquake (3.11) recorded shindo 7, together with several other strongest earthquakes. In contrast, earthquakes at shindo 3 or below are often.

This Python module, shindo.py, calculates the shindo scale from 3-D acceleration data stored in a NumPy array in the unit of [gal] or [cm/s2].

Calculation method

Usually, the acceleration data for north-south, east-west, and up-down axes are acquired every 10 ms to calculate shindo. If a NumPy array stores the acceleration data as such in [gal], this Python module can calculates shindo.

Calculation steps

There are seven steps to calculate shindo from acceleration data.

  1. Each of the 3-D acceleration data is transformed into frequency domain by DFT or FFT.
  2. Three special filters are appplied to the 3-D acceleration spectra.
  3. The spectra is transformed back into time domain by inverse DFT or FFT.
  4. The root-sum-square (RSS) acceleration (i.e. the absolute value of the vector sum) is calculated from the time-domain north-south, east-west, and up-down data obtained in 3.
  5. A value called a is found where the RSS acceleration is above the value of a for 0.3 seconds.
  6. A value called I is obtained by I = 2 log10 a + 0.94.
  7. I is rounded at the third digits from the decimal point and cut off the fractional values below the second digit from the decimal point.

Special filters

Three filters are applied to the spectra, namely, the periodic-effect filter, the high-cut filter, and the low-cut filter. The mathematical expression of these filters can be found in the WikiPedia article, but the gain of the filters are shown below.

Periodic-effect, high-cut, and low-cut filters

In frequency domain, “applying filters” means just multiplying the gain in the figure above to the spectra, i.e., product of two NumPy arrays if the filters are also expressed as a NumPy array.

How to use

shindo.getShindo(a: numpy.ndarray, Ts: float) -> float

Giving an NumPy array a whose shape is (N, 3) to this shindo.getShindo() function returns the JMA instrumental shindo value, which corresponds to the result, I, after Step 7 above. Ts is the sampling period. Usually, Ts = 0.01 if you give this function the recorded past seismic data from the JMA website.

The number of data points of the NumPy array, N, is arbitrary. However, the number of data points should contain enough length in time domain, e.g., 5 seconds, to enable accurate calculation of shindo. If Ts = 10 ms, N = 500 for 5 seconds of acceleration data.

shindo.getShindoName(I: float, lang: str = 'jp') -> str

This functon converts the JMA instrumental shindo scale, which may have fractional values below the decimal point, into the actual shindo scale. If lang = 'jp' is given, shindo 5-, 5+, 6-, and 6+ becomes 5弱, 5強, 6弱, and 6強 by this function. if lang != 'jp', 5-, 5+, 6-, and 6+ are returned, as a string. Shindo 0-4 are also returned as a string.

Test bench

This module contains the if __name__ == '__main__': section in order to allow to be run and test itself. A data of past major earthquake, which was observed in Yonago, Tottori, Japan, is automatically downloaded as a CSV file and the acceleration data is acquired as a NumPy array. The calculation will show shindo 5.1, which is equal to the value available on the JMA website. You can change the past earthquake if you know the URL of the CSV file. See this website for the past major earthquake acceleration data.

Owner
RR_Inyo
An electrical engineer/researcher wanting to use programming languages to enhance power electronics systems design and analysis. A hobbyist programmer.
RR_Inyo
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022