Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

Overview

PatchNets

This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details, we refer to our project page, which also includes supplemental videos.

This code requires a functioning installation of DeepSDF, which can then be modified using the provided files.

(Optional) Making ShapeNet V1 Watertight

If you want to use ShapeNet, please follow these steps:

  1. Download Occupancy Networks
  2. On Linux, follow the installation steps from there:
conda env create -f environment.yaml
conda activate mesh_funcspace
python setup.py build_ext --inplace
  1. Install the four external dependencies from external/mesh-fusion:
    • for libfusioncpu and libfusiongpu, run cmake and then setup.py
    • for libmcubes and librender, run setup.py
  2. Replace the original OccNet files with the included slightly modified versions. This mostly switches to using .obj instead of .off
  3. Prepare the original Shapenet meshes by copying all objs as follows: from 02858304/1b2e790b7c57fc5d2a08194fd3f4120d/model.obj to 02858304/1b2e790b7c57fc5d2a08194fd3f4120d.obj
  4. Use generate_watertight_meshes_and_sample_points() from useful_scripts.py. Needs to be run twice, see comment at generate_command.
  5. On a Linux machine with display, activate mesh_funcspace
  6. Run the generated command.sh. Note: this preprocessing crashes frequently because some meshes cause issues. They need to be deleted.

Preprocessing

During preprocessing, we generate SDF samples from obj files.

The C++ files in src/ are modified versions of the corresponding DeepSDF files. Please follow the instruction on the DeepSDF github repo to compile these. Then run preprocess_data.py. There is a special flag in preprocess_data.py for easier handling of ShapeNet. There is also an example command for preprocessing ShapeNet in the code comments. If you want to use depth completion, add the --randomdepth and --depth flags to the call to preprocess_data.py.

Training

The files in code/ largely follow DeepSDF and replace the corresponding files in your DeepSDF installation. Note that some legacy functions from these files might not be compatible with PatchNets.

  • Some settings files are available in code/specs/. The training/test splits can be found in code/examples/splits/. The DataSource and, if used, the patch_network_pretrained_path and pretrained_depth_encoder_weights need to be adapted.
  • Set a folder that collects all experiments in code/localization/SystemSpecific.py.
  • The code uses code/specs.json as the settings file. Replace this file with the desired settings file.
  • The code creates a results folder, which also includes a backup. This is necessary to later run the evaluation script.
  • Throughout the code, metadata refers to patch extrinsics.
  • mixture_latent_mode can be set to all_explicit for normal PatchNets mode or to all_implicit for use with object latents.
    • Some weights automatically change in deep_sdf_decoder.py depending on whether all_explicit or all_implicit is used.
  • For all_implicit/object latents, please set sdf_filename under use_precomputed_bias_init in deep_sdf_decoder.py to an .npz file that was obtained via Preprocessing and for which initialize_mixture_latent_vector() from train_deep_sdf.py has been run (e.g. by including it in the training set and training a normal PatchNet). MixtureCodeLength is the object latent size and PatchCodeLength is the size of each of the regressed patch codes.
  • For all_explicit/normal PatchNets, MixtureCodeLength needs to be compatible with PatchCodeLength. Set MixtureCodeLength = (PatchCodeLength + 7) x num_patches. The 7 comes from position (3) + rotation (3) + scale (1). Always use 7, regardless of whether scale and/or rotation are used. Consider keeping the patch extrinsics fixed at their initial values instead of optimizing them with the extrinsics loss, see the second stage of StagedTraining.
  • When using staged training, NumEpochs and the total Lengths of each Staged schedule should be equal. Also note that both Staged schedules should have the exact same Lengths list.

Evaluation

  1. Fit PatchNets to test data: Use train_deep_sdf.py to run the trained network on the test data. Getting the patch parameters for a test set is almost the same workflow as training a network, except that the network weights are initialized and then kept fixed and a few other settings are changed. Please see included test specs.json for examples. In all cases, set test_time = True, train_patch_network = False, train_object_to_patch = False. Set patch_network_pretrained_path in the test specs.json to the results folder of the trained network. Make sure that ScenesPerBatch is a multiple of the test set size. Adjust the learning rate schedules according to the test specs.json examples included.
  2. Get quantitative evaluation: Use evaluate_patch_network_metrics() from useful_scripts.py with the test results folder. Needs to be run twice, see comment at generate_meshes. Running this script requires an installation of Occupancy Networks, see comments in evaluate_patch_network_metrics(). It also requires the obj files of the dataset that were used for Preprocessing.

Applications, Experiments, and Mesh Extraction

useful_scripts.py contains code for the object latent applications from Sec. 4.3: latent interpolation, the generative model and depth completion. The depth completion code contains a mode for quantitative evaluation. useful_scripts.py also contains code to extract meshes.

code/deep_sdf/data.py contains the code snippet used for the synthetic noise experiments in Sec. 7 of the supplementary material.

Additional Functionality

The code contains additional functionalities that are not part of the publication. They might work but have not been thoroughly tested and can be removed.

  • wrappers to allow for easy interaction with a trained network (do not remove, required to run evaluation)
    • _setup_torch_network() in useful_scripts.py
  • a patch encoder
    • Instead of autodecoding a patch latent code, it is regressed from SDF point samples that lie inside the patch.
    • Encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a depth encoder
    • A depth encoder maps from one depth map to all patch parameters.
    • use_depth_encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a tiny PatchNet version
    • The latent code is reshaped and used as network weights, i.e. there are no shared weights between different patches.
    • dims in specs.json should be set to something small like [ 8, 8, 8, 8, 8, 8, 8 ]
    • use_tiny_patchnet in specs.json
    • Requires to set PatchLatentCode correctly, the desired value is printed by _initialize_tiny_patchnet() in deep_sdf_decoder.py.
  • a hierarchical representation
    • Represents/encodes a shape using large patches for simple regions and smaller patches for complex regions of the geometry.
    • hierarchical_representation() in useful_scripts.py. Never tested. Later changes to the network code might also have broken something.
  • simplified curriculum weighting from Curriculum DeepSDF
    • use_curriculum_weighting in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • positional encoding from NeRF
    • positional_encoding in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • a Neural ODE deformation model for patches
    • Instead of a simple MLP regressing the SDF value, a velocity field first deforms the patch region and then the z-value of the final xyz position is returned as the SDF value. Thus the field flattens the surface to lie in the z=0 plane. Very slow due to Neural ODE. Might be useful to get UV maps/a direct surface parametrization.
    • use_ode and time_dependent_ode in specs.json. Additional parameters are in train_deep_sdf.py.
  • a mixed representation that has explicit patch latent codes and only regresses patch extrinsics from an object latent code
    • Set mixture_latent_mode in specs.json to patch_explicit_meta_implicit. posrot_latent_size is the size of the object latent code in this case. mixture_to_patch_parameters is the network that regresses the patch extrinsics. Check that this works as intended, later changes to the code might have broken something.

Citation

This code builds on DeepSDF. Please consider citing DeepSDF and PatchNets if you use this code.

@article{Tretschk2020PatchNets, 
    author = {Tretschk, Edgar and Tewari, Ayush and Golyanik, Vladislav and Zollh\"{o}fer, Michael and Stoll, Carsten and Theobalt, Christian}, 
    title = "{PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations}", 
    journal = {European Conference on Computer Vision (ECCV)}, 
    year = "2020" 
} 
@InProceedings{Park_2019_CVPR,
    author = {Park, Jeong Joon and Florence, Peter and Straub, Julian and Newcombe, Richard and Lovegrove, Steven},
    title = {DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}

License

Please note that this code is released under an MIT licence, see LICENCE. We have included and modified third-party components, which have their own licenses. We thank all of the respective authors for releasing their code, especially the team behind DeepSDF!

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022