An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Overview

causal-bald

| Abstract | Installation | Example | Citation | Reproducing Results DUE

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Evolution of CATE function with Causal BALD acquisition strategy

Abstract

Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations, but when measuring the outcome for an individual is costly (e.g. biopsy) a sample efficient strategy for acquiring outcomes is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, naive application of existing methods selects training data that is biased toward regions where the treatment effect cannot be identified because there is non-overlapping support between the treated and control populations. To maximize sample efficiency for learning personalized treatment effects, we introduce new acquisition functions grounded in information theory that bias data acquisition towards regions where overlap is satisfied, by combining insights from deep Bayesian active learning and causal inference. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions which aim to simulate common dataset biases and pathologies.

Installation

$ git clone [email protected]:[anon]/causal-bald.git
$ cd causal-bald
$ conda env create -f environment.yml
$ conda activate causal-bald

[Optional] For developer mode

$ pip install -e .

Example

Active learning loop

First run using random acquisition:

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function random \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Now run using $\mu\rho\textrm{-BALD}$ acquisition.

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function mu-rho \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Evaluation

Evaluate PEHE at each acquisition step

causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe
causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe

Plot results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m random

Plotting convergence of acquisitions. Comparing random and mu-rho for example code

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{jesson2021causal,
  title={Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data},
  author={Jesson, Andrew and Tigas, Panagiotis and van Amersfoort, Joost and Kirsch, Andreas and Shalit, Uri and Gal, Yarin},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2021}
}

Reprodcuing Results Due

IHDP

$\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-tau_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Random

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-sundin_temp-1.0/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

Synthetic

Synthetic dataset

Synthetic: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/ihdp pehe

Synthetic: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-tau_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Random

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-random_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-sundin_temp-1.0/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/synthetic \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

CMNIST

CMNIST dataset

CMNIST: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/ihdp pehe

CMNIST: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-tau_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Random

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-random_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-sundin_temp-1.0/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/cmnist \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin
Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022