QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Related tags

Deep LearningQAHOI
Overview

QAHOI

QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

Requirements

  • PyTorch >= 1.5.1
  • torchvision >= 0.6.1
pip install -r requirements.txt
  • Compiling CUDA operators
cd ./models/ops
sh ./make.sh
# test
python test.py

Dataset Preparation

Please follow the HICO-DET dataset preparation of GGNet.

After preparation, the data folder as follows:

data
├── hico_20160224_det
|   ├── images
|   |   ├── test2015
|   |   └── train2015
|   └── annotations
|       ├── anno_list.json
|       ├── corre_hico.npy
|       ├── file_name_to_obj_cat.json
|       ├── hoi_id_to_num.json
|       ├── hoi_list_new.json
|       ├── test_hico.json
|       └── trainval_hico.json

Evaluation

Download the model to params folder.

  • We test the model with NVIDIA A6000 GPU, Pytorch 1.9.0, Python 3.8 and CUDA 11.2.
Model Full (def) Rare (def) None-Rare (def) Full (ko) Rare (ko) None-Rare (ko) Download
Swin-Tiny 28.47 22.44 30.27 30.99 24.83 32.84 model
Swin-Base*+ 33.58 25.86 35.88 35.34 27.24 37.76 model
Swin-Large*+ 35.78 29.80 37.56 37.59 31.36 39.36 model

Evaluating the model by running the following command.

--eval_extra to evaluate the spatio contribution.

mAP_default.json and mAP_ko.json will save in current folder.

  • Swin-Tiny
python main.py --resume params/QAHOI_swin_tiny_mul3.pth --backbone swin_tiny --num_feature_levels 3 --use_nms --eval
  • Swin-Base*+
python main.py --resume params/QAHOI_swin_base_384_22k_mul3.pth --backbone swin_base_384 --num_feature_levels 3 --use_nms --eval
  • Swin-Large*+
python main.py --resume params/QAHOI_swin_large_384_22k_mul3.pth --backbone swin_large_384 --num_feature_levels 3 --use_nms --eval

Training

Download the pre-trained swin-tiny model from Swin-Transformer to params folder.

Training QAHOI with Swin-Tiny from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_tiny \
        --pretrained params/swin_tiny_patch4_window7_224.pth \
        --output_dir logs/swin_tiny_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Base*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_base_384 \
        --pretrained params/swin_base_patch4_window7_224_22k.pth \
        --output_dir logs/swin_base_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Training QAHOI with Swin-Large*+ from scratch.

python -m torch.distributed.launch \
        --nproc_per_node=8 \
        --use_env main.py \
        --backbone swin_large_384 \
        --pretrained params/swin_large_patch4_window12_384_22k.pth \
        --output_dir logs/swin_large_384_22k_mul3 \
        --epochs 150 \
        --lr_drop 120 \
        --num_feature_levels 3 \
        --num_queries 300 \
        --use_nms

Citation

@article{cjw,
  title={QAHOI: Query-Based Anchors for Human-Object Interaction Detection},
  author={Junwen Chen and Keiji Yanai},
  journal={arXiv preprint arXiv:2112.08647},
  year={2021}
}
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022