Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

Overview

CenterPose

Overview

This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image" by Lin et al. (full citation below). In this work, we propose a single-stage, keypoint-based approach for category-level object pose estimation, which operates on unknown object instances within a known category using a single RGB image input. The proposed network performs 2D object detection, detects 2D keypoints, estimates 6-DoF pose, and regresses relative 3D bounding cuboid dimensions. These quantities are estimated in a sequential fashion, leveraging the recent idea of convGRU for propagating information from easier tasks to those that are more difficult. We favor simplicity in our design choices: generic cuboid vertex coordinates, a single-stage network, and monocular RGB input. We conduct extensive experiments on the challenging Objectron benchmark of real images, outperforming state-of-the-art methods for 3D IoU metric (27.6% higher than the single-stage approach of MobilePose and 7.1% higher than the related two-stage approach). The algorithm runs at 15 fps on an NVIDIA GTX 1080Ti GPU.

Installation

The code was tested on Ubuntu 16.04, with Anaconda Python 3.6 and PyTorch 1.1.0. Higher versions should be possible with some accuracy difference. NVIDIA GPUs are needed for both training and testing.

  1. Clone this repo:

    CenterPose_ROOT=/path/to/clone/CenterPose
    git clone https://github.com/NVlabs/CenterPose.git $CenterPose_ROOT
    
  2. Create an Anaconda environment or create your own virtual environment

    conda create -n CenterPose python=3.6
    conda activate CenterPose
    pip install -r requirements.txt
    conda install -c conda-forge eigenpy
    
  3. Compile the deformable convolutional layer

    git submodule init
    git submodule update
    cd $CenterPose_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    

    [Optional] If you want to use a higher version of PyTorch, you need to download the latest version of DCNv2 and compile the library.

    git submodule set-url https://github.com/jinfagang/DCNv2_latest.git src/lib/models/networks/DCNv2
    git submodule sync
    git submodule update --init --recursive --remote
    cd $CenterPose_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  4. Download our pre-trained models for CenterPose and move all the .pth files to $CenterPose_ROOT/models/CenterPose/. We currently provide models for 9 categories: bike, book, bottle, camera, cereal_box, chair, cup, laptop, and shoe.

  5. Prepare training/testing data

    We save all the training/testing data under $CenterPose_ROOT/data/.

    For the Objectron dataset, we created our own data pre-processor to extract the data for training/testing. Refer to the data directory for more details.

Demo

We provide supporting demos for image, videos, webcam, and image folders. See $CenterPose_ROOT/images/CenterPose

For category-level 6-DoF object estimation on images/video/image folders, run:

cd $CenterPose_ROOT/src
python demo.py --demo /path/to/image/or/folder/or/video --arch dlav1_34 --load_model ../path/to/model

You can also enable --debug 4 to save all the intermediate and final outputs.

For the webcam demo (You may want to specify the camera intrinsics via --cam_intrinsic), run

cd $CenterPose_ROOT/src
python demo.py --demo webcam --arch dlav1_34 --load_model ../path/to/model

Training

We follow the approach of CenterNet for training the DLA network, reducing the learning rate by 10x after epoch 90 and 120, and stopping after 140 epochs.

For debug purposes, you can put all the local training params in the $CenterPose_ROOT/src/main_CenterPose.py script. You can also use the command line instead. More options are in $CenterPose_ROOT/src/lib/opts.py.

To start a new training job, simply do the following, which will use default parameter settings:

cd $CenterPose_ROOT/src
python main_CenterPose.py

The result will be saved in $CenterPose_ROOT/exp/object_pose/$dataset_$category_$arch_$time ,e.g., objectron_bike_dlav1_34_2021-02-27-15-33

You could then use tensorboard to visualize the training process via

cd $path/to/folder
tensorboard --logdir=logs --host=XX.XX.XX.XX

Evaluation

We evaluate our method on the Objectron dataset, please refer to the objectron_eval directory for more details.

Citation

Please cite grasp_primitiveShape if you use this repository in your publications:

@article{lin2021single,
  title={Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image},
  author={Lin, Yunzhi and Tremblay, Jonathan and Tyree, Stephen and Vela, Patricio A and Birchfield, Stan},
  journal={arXiv preprint arXiv:2109.06161},
  year={2021}
}

Licence

CenterPose is licensed under the NVIDIA Source Code License - Non-commercial.

Owner
NVIDIA Research Projects
NVIDIA Research Projects
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022