TC-GNN with Pytorch integration

Overview

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU)

  • Cite this project and paper.
@inproceedings{TC-GNN,
  title={TC-GNN: Accelerating Sparse Graph Neural Network Computation Via Dense Tensor Core on GPUs},
  author={Yuke Wang and Boyuan Feng and Yufei Ding},
  booktitle={Arxiv},
  year={2022}
}
  • Clone this project.
git clone [email protected]:YukeWang96/TCGNN-Pytorch.git
  • OS & Compiler:
  • Ubuntu 16.04+
  • gcc >= 7.5
  • cmake >= 3.14
  • CUDA >= 11.0 and nvcc >= 11.0

Files and Directories.

  • config.py: the configuration file for the shape of a TC block.
  • bench.py: the benchmark file for invoking main_tcgnn.py for various datasets and models.
  • main_tcgnn.py: the main entry for running TC-GNN.
  • count_TC_blocks.py: counting the total number of TC blocks without sparse-graph translation.
  • proc_prof.py: get the detailed GPU kernel metrics from the ncu csv output.
  • TCGNN_conv/: the directory for core TC-GNN implementations, including TCGNN_kernel.cu and TCGNN.cpp.

Environment Setup.

[Method-1] Install via Docker (Recommended).

  • Go to Docker/
  • Run ./build.sh
  • Run ./launch.sh

[Method-2] Install via Conda.

  • Install conda on system Toturial.
  • Create a conda environment:
conda create -n env_name python=3.6
  • Install Pytorch:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

or using pip [Note that make sure the pip you use is the pip from current conda environment. You can check this by which pip]

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
conda install -c dglteam dgl-cuda11.0
pip install torch requests tqdm
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html
pip install torch-geometric

Install TC-GNN.

Go to TCGNN_conv/, then run

./build.sh

to install the TCGNN_conv modules with Pytorch binding. Note that this step is required for both Docker and Conda setup.

Download graph datasets.

Get the preprocessed datasets in .npy at here, then run

tar -zxvf tcgnn-ae-graphs.tar.gz

Running PyG baseline.

  • Go to pyg_baseline/ directory;
  • Pass the --model parameter in pyg_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_pyg.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_pyg.log to run_pyg.csv for ease of analysis.

Running DGL baseline.

  • Go to dgl_baseline/ directory
  • Pass the --model parameter in dgl_main.py with gcn and gin to profile the example GCN and GIN model, respectively;
  • ./0_bench.py| tee run_dgl.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_dgl.log to run_dgl.csv for ease of visualization.

Running TC-GNN.

  • Under the current project directory
  • ./0_bench.py| tee run_TCGNN.log to run the script and the report 10 epoch runtime for all evaluated datasets.
  • ./1_log2csv.py to convert the run_TCGNN.log to run_TCGNN.csv for ease of analysis.
You might also like...
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

Dahua Camera and Doorbell Home Assistant Integration
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Wafer Fault Detection using MlOps Integration
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Comments
  • Any docs about this project?

    Any docs about this project?

    Hi I came across this project and found the implementation is quite interesting. Is there any docs/paper that detail this project? Or you have any plan to release these kinds of information in the future?

    Thanks

    opened by mmmeee1111 1
Releases(v0.2)
Owner
YUKE WANG
https://wang-yuke.com
YUKE WANG
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022