[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

Overview

GNeRF

This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation is written in Pytorch.

architecture

Abstract

We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.

Installation

We recommand using Anaconda to setup the environment. Run the following commands:

# Create a conda environment named 'gnerf'
conda create --name gnerf python=3.7
# Activate the environment
conda activate gnerf
# Install requirements
pip install -r requirements.txt

Data

Blender

Download from the NeRF official Google Drive . Please download and unzip nerf_synthetic.zip.

DTU

Download the preprocessed DTU training data from original MVSNet repo and unzip. We also provide a few DTU examples for fast testing.

Your own data

We share some advices on preparing your own dataset and setting related parameters:

  • Pose sampling space should be close to the data: Our method requires a reasonable prior pose distribution.
  • The training may fail to converge on symmetrical scenes: The inversion network can not map an image to different poses.

Running

python train.py ./config/CONFIG.yaml --data_dir PATH/TO/DATASET

where you replace CONFIG.yaml with your config file (blender.yaml for blender dataset and dtu.yaml for DTU dataset). You can optionally monitor on the training process using tensorboard by adding --open_tensorboard argument. The default setting takes around 13GB GPU memory. After 40k iterations, you should get a video like these:

Evaluation

python eval.py --ckpt PATH/TO/CKPT.pt --gt PATH/TO/GT.json 

where you replace PATH/TO/CKPT.pt with your trained model checkpoint, and PATH/TO/GT.json with the json file in NeRF-Synthetic dataset. Then, just run the ATE toolbox on the evaluation directory.

List of Possible Improvements

For future work, we recommend the following aspects to further improve the performance and stability:

  • Replace the single NeRF network with mip-NeRF network: The use of separate MLPs in the original NeRF paper is a key detail to represent thin objects in the scene, if you retrain the original NeRF with only one MLP you will find a decrease in performance. While in our work, a single MLP network is necessary to keep the coarse image and fine image aligned. The cone casting and IPE features of mip-NeRF allow it to explicitly encode scale into the input features and thereby enable an MLP to learn a multiscale representation of the scene.

  • Combine BARF to further overcome local minima: The BARF method shows that susceptibility to noise from positional encoding affects the basin of attraction for registration and present a coarse-to-fine registration strategy.

  • Combine NeRF++ to represent the background in real scenes with complex background.

Citation

If you find our code or paper useful, please consider citing

@InProceedings{meng2021gnerf,
    author = {Meng, Quan and Chen, Anpei and Luo, Haimin and Wu, Minye and Su, Hao and Xu, Lan and He, Xuming and Yu, Jingyi},
    title = {{G}{N}e{R}{F}: {G}{A}{N}-based {N}eural {R}adiance {F}ield without {P}osed {C}amera},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year = {2021}
}

Some code snippets are borrowed from GRAF and nerf_pl. Thanks for these great projects.

Owner
Quan Meng
Quan Meng
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022