Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

Related tags

Deep LearningMPG2
Overview

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN.

Paper Demo

Setup Environment

can NOT run on CPU

conda create -n mpg python=3.8
conda activate mpg
git clone [email protected]:klory/food_project.git
cd food_project
pip install -r requirements.txt
pip install git+https://github.com/pytorch/[email protected]

Pretrained models

Pretrained models are stored in google-link, files are already in their desired locations, so following the same directory structure will minimize burdens to run the code inside the project (some files are not necessary for the current version of the project as of 2021-03-31).

Pizza10 dataset

Please follow MPG repository.

Ingredient classifier

Please follow MPG repository.

PizzaView dataset

Download PizzaView Dataset from google-link/data/Pizza3D.

cd to datasets/

$ python pizza3d.py

View regressor

cd to view_regressor/

Train

$ CUDA_VISIBLE_DEVICES=0 python train.py --wandb=0

Validate

Download the pretrained model google-link/view_regressor/runs/pizza3d/1ab8hru7/00004999.ckpt:

$ CUDA_VISIBLE_DEVICES=0 python val.py --ckpt_path=/runs/pizza3d/1ab8hru7/00004999.ckpt

MPG2

cd to mpg/,

Train

$ CUDA_VISIBLE_DEVICES=0,1 python train.py --wandb=0

Validate

Download the pretrained model google-linkmpg/runs/30cupu9m/00260000.ckpt.

cd to metrics/:

CUDA_VISIBLE_DEVICES=0 python generate_samples.py --model=mpg

Metrics

cd to metrics/,

For more about FID and mAP, follow MPG repository.

FID (Frechet Inception Distance)

To compute FID, we need to first compute the statistics of the real images.

CUDA_VISIBLE_DEVICES=0 python calc_inception.py

then

$ CUDA_VISIBLE_DEVICES=0 python fid.py --model=mpg

I got FID=6.33 using the provided checkpoint.

mAE (mean Absolute Error) for view attributes

Computing mAE uses the pre-trained view regressor.

$ CUDA_VISIBLE_DEVICES=0 python mAE.py --model=mpg

Demo

cd to metrics/.

CUDA_VISIBLE_DEVICES=0 streamlit run app.py
Owner
Fangda Han
Ph.D. Student, Department of Computer Science, Rutgers University
Fangda Han
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022