The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Overview

SIGIR2021-EGLN

The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Neural graph based Collaborative Filtering (CF) models learn user and item embeddings based on the user-item bipartite graph structure, and have achieved state-of-the-art recommendation performance. In the ubiquitous implicit feedback based CF, users’ unobserved behaviors are treated as unlinked edges in the user-item bipartite graph. As users’ unobserved behaviors are mixed with dislikes and unknown positive preferences, the fixed graph structure input is missing with potential positive preference links. In this paper, we study how to better learn enhanced graph structure for CF. We argue that node embedding learning and graph structure learning can mutually enhance each other in CF, as updated node embeddings are learned from previous graph structure, and vice versa (i.e., newly updated graph structure are optimized based on current node embedding results). Some previous works provided approaches to refine the graph structure. However, most of these graph learning models relied on node features for modeling, which are not available in CF. Besides, nearly all optimization goals tried to compare the learned adaptive graph and the original graph from a local reconstruction perspective, whether the global properties of the adaptive graph structure are modeled in the learning process is still unknown. To this end, in this paper, we propose an enhanced graph learning network (EGLN ) approach for CF via mutual information maximization. The key idea of EGLN is two folds: First, we let the enhanced graph learning module and the node embedding module iteratively learn from each other without any feature input. Second, we design a local-global consistency optimization function to capture the global properties in the enhanced graph learning process. Finally, extensive experimental results on three real-world datasets clearly show the effectiveness of our proposed model.

Prerequisites

  • Tensorflow 1.15.0
  • Python 3.7.9

Usage

  • Dataset:
    Under the data folder(cd ./datasets)
  • Run model for amazon dataset:
    cd ./code/amazon_code python egln.py

Citation

If you find this useful for your research, please kindly cite the following paper:

@inproceedings{yang2021enhanced,
  title={Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization},
  author={Yang, Yonghui and Wu, Le and Hong, Richang and Zhang, Kun and Wang, Meng},
  booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={71--80},
  year={2021}
}

This work focus on graph structure learning via graph mutual infomax. If you are also interested in graph node attributes learning, you can refer to the following paper:

@inproceedings{wu2020joint,
  title={Joint item recommendation and attribute inference: An adaptive graph convolutional network approach},
  author={Wu, Le and Yang, Yonghui and Zhang, Kun and Hong, Richang and Fu, Yanjie and Wang, Meng},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={679--688},
  year={2020}
}

Author contact:

Email: [email protected]

Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022