The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Overview

SIGIR2021-EGLN

The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Neural graph based Collaborative Filtering (CF) models learn user and item embeddings based on the user-item bipartite graph structure, and have achieved state-of-the-art recommendation performance. In the ubiquitous implicit feedback based CF, users’ unobserved behaviors are treated as unlinked edges in the user-item bipartite graph. As users’ unobserved behaviors are mixed with dislikes and unknown positive preferences, the fixed graph structure input is missing with potential positive preference links. In this paper, we study how to better learn enhanced graph structure for CF. We argue that node embedding learning and graph structure learning can mutually enhance each other in CF, as updated node embeddings are learned from previous graph structure, and vice versa (i.e., newly updated graph structure are optimized based on current node embedding results). Some previous works provided approaches to refine the graph structure. However, most of these graph learning models relied on node features for modeling, which are not available in CF. Besides, nearly all optimization goals tried to compare the learned adaptive graph and the original graph from a local reconstruction perspective, whether the global properties of the adaptive graph structure are modeled in the learning process is still unknown. To this end, in this paper, we propose an enhanced graph learning network (EGLN ) approach for CF via mutual information maximization. The key idea of EGLN is two folds: First, we let the enhanced graph learning module and the node embedding module iteratively learn from each other without any feature input. Second, we design a local-global consistency optimization function to capture the global properties in the enhanced graph learning process. Finally, extensive experimental results on three real-world datasets clearly show the effectiveness of our proposed model.

Prerequisites

  • Tensorflow 1.15.0
  • Python 3.7.9

Usage

  • Dataset:
    Under the data folder(cd ./datasets)
  • Run model for amazon dataset:
    cd ./code/amazon_code python egln.py

Citation

If you find this useful for your research, please kindly cite the following paper:

@inproceedings{yang2021enhanced,
  title={Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization},
  author={Yang, Yonghui and Wu, Le and Hong, Richang and Zhang, Kun and Wang, Meng},
  booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={71--80},
  year={2021}
}

This work focus on graph structure learning via graph mutual infomax. If you are also interested in graph node attributes learning, you can refer to the following paper:

@inproceedings{wu2020joint,
  title={Joint item recommendation and attribute inference: An adaptive graph convolutional network approach},
  author={Wu, Le and Yang, Yonghui and Zhang, Kun and Hong, Richang and Fu, Yanjie and Wang, Meng},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={679--688},
  year={2020}
}

Author contact:

Email: [email protected]

Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022