A mini lib that implements several useful functions binding to PyTorch in C++.

Overview

Torch-gather

A mini library that implements several useful functions binding to PyTorch in C++.

What does gather do? Why do we need it?

When dealing with sequences, a common way of processing the variable lengths is padding them to the max length, which leads to quite a lot redundancies and waste on computing and memory as sequences length varies. So gather just removes their paddings and makes computation without waste of computation resource.

Install

python setup.py install

Docs

Note that all the input tensors should be on cuda device.

  • gather.gathercat(x_padded:torch.FloatTensor, lx:torch.IntTensor)

    Return a concatence of given padded tensor x_padded according to its lengths lx.

    Input:

    x_padded (torch.float): padded tensor of size (N, L, V), where L=max(lx).

    lx (torch.int): lengths of size (N, ).

    Return:

    x_gather (torch.float): the gathered tensor without paddings of size (lx[0]+lx[1]+...+lx[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathercat
    >>> lx = torch.randint(3, 20, (5, ), dtype=torch.int32, device='cuda')
    >>> x_padded = torch.randn((5, lx.max(), 64), device='cuda')
    >>> x_padded.size(), lx.size()
    (torch.Size([5, 19, 64]), torch.Size([5]))
    >>> x_gather = gathercat(x_padded, lx)
    >>> x_gather.size()
    torch.Size([81, 64])
    # another example, with V=1
    >>> x_padded = torch.tensor([[1., 2., 3.],[1.,2.,0.]], device='cuda').unsqueeze(2)
    >>> lx = torch.tensor([3,2], dtype=torch.int32, device='cuda')
    >>> x_padded
    tensor([[[1.],
            [2.],
            [3.]],
    
            [[1.],
            [2.],
            [0.]]], device='cuda:0')
    >>> lx
    tensor([3, 2], device='cuda:0', dtype=torch.int32)
    >>> gathercat(x_padded, lx)
    tensor([[1.],
            [2.],
            [3.],
            [1.],
            [2.]], device='cuda:0')

    This function is easy to implement with torch python functions like torch.cat(), however, gathercat() is customized for specified tasks, and more efficient.

  • gather.gathersum(xs:torch.FloatTensor, ys:torch.FloatTensor, lx:torch.IntTensor, ly:torch.IntTensor)

    Return a sequence-matched broadcast sum of given paired gathered tensor xs and ys. For a pair of sequences in xs and ys, say xs_i and ys_i, gathersum() broadcast them so that they can be added up. The broadcast step can be understood as (xs_i.unsqueeze(1)+ys_i.unsqueeze(2)).reshape(-1, V) with python and torch.

    Input:

    xs (torch.float): gathered tensor of size (ST, V), where ST=sum(lx).

    ys (torch.float): gathered tensor of size (SU, V), where SU=sum(ly).

    lx (torch.int): lengths of size (N, ). lx[i] denotes length of the $i_{th}$ sequence in xs.

    ly (torch.int): lengths of size (N, ). ly[i] denotes length of the $i_{th}$ sequence in ys.

    Return:

    gathered_sum (torch.float): the gathered sequence-match sum of size (lx[0]ly[0]+lx[1]ly[1]+...+lx[N-1]ly[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathersum
    >>> N, T, U, V = 5, 4, 4, 3
    >>> lx = torch.randint(1, T, (N, ), dtype=torch.int32, device='cuda')
    >>> ly = torch.randint(1, U, (N, ), dtype=torch.int32, device='cuda')
    >>> xs = torch.randn((lx.sum(), V), device='cuda')
    >>> ys = torch.randn((ly.sum(), V), device='cuda')
    >>> xs.size(), ys.size(), lx.size(), ly.size()
    (torch.Size([11, 3]), torch.Size([10, 3]), torch.Size([5]), torch.Size([5]))
    >>> gathered_sum = gathersum(xs, ys, lx, ly)
    >>> gathered_sum.size()
    torch.Size([20, 3])
    # let's see how the size 20 comes out
    >>> lx.tolist(), ly.tolist()
    ([2, 2, 1, 3, 3], [3, 1, 3, 1, 2])
    # still unclear? Uh, how about this?
    >>> (lx * ly).sum().item()
    20

    This function seems doing something weird. Please refer to the discussion page for a specific usage example.

Reference

  • PyTorch binding refers to the 1ytic/warp-rnnt

  • For the specific usage of these functions, please refer to this discussion.

Owner
maxwellzh
maxwellzh
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022