Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

Overview

The Lottery Ticket Hypothesis for Pre-trained BERT Networks

License: MIT

Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS 2020]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin.

Our implementation is based on Huggingface repo. Details are referred to README here. Pre-trained subnetworks are coming soon.

Overview

The Existence of Matching Subnetworks in BERT

Transfer Learning for BERT Winning Tickets

Method

Reproduce Details

Prerequisites and Installation

Details are referred to README here.

Iterative Magnitude Pruning (IMP)

MLM task:

python -u LT_pretrain.py 
	   --output_dir LT_pretrain_model
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train 
	   --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 16 
	   --per_gpu_eval_batch_size 16 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 10000 
	   --save_steps 10000 
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u LT_glue.py
	   --output_dir tmp/mnli 
	   --logging_steps 36813 
	   --task_name MNLI 
	   --data_dir glue_data/MNLI 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --max_seq_length 128 
	   --per_gpu_train_batch_size 32 
	   --learning_rate 2e-5 
	   --num_train_epochs 30 
	   --overwrite_output_dir 
	   --evaluate_during_training 
	   --save_steps 36813
	   --eval_all_checkpoints 
	   --seed 57

SQuAD task:

python -u squad_trans.py 
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --train_file SQuAD/train-v1.1.json 
       --predict_file SQuAD/dev-v1.1.json 
       --per_gpu_train_batch_size 16 
       --learning_rate 3e-5 
       --num_train_epochs 40 
       --max_seq_length 384 
       --doc_stride 128 
       --evaluate_during_training 
       --eval_all_checkpoints 
       --overwrite_output_dir 
       --logging_steps 22000 
       --save_steps 22000 
       --seed 57

One-shot Magnitude Pruning (OMP)

python oneshot.py --weight [pre or rand] --model [glue or squad or pretrain] --rate 0.5

Fine-tuning

MLM task:

python -u pretrain_trans.py 
	   --dir pre\  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt\ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/pretrain_mask.pt \ [mask file]
	   --output_dir tmp/530/pre 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 8 
	   --per_gpu_eval_batch_size 8 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 2000 
	   --save_steps 0 
	   --max_steps 20000  
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u glue_trans.py 
       --dir pre \  [using random weight or official pretrain weight]
       --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
       --mask_dir tmp/dif_mask/mnli_mask.pt \ [mask file]
       --output_dir tmp/530/mnli 
       --logging_steps 12271 
       --task_name MNLI 
       --data_dir glue_data/MNLI 
       --model_type bert 
       --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --max_seq_length 128 
       --per_gpu_train_batch_size 32 
       --learning_rate 2e-5 
       --num_train_epochs 3 
       --overwrite_output_dir 
       --evaluate_during_training 
       --save_steps 0 
       --eval_all_checkpoints 
       --seed 5

SQuAD task:

python -u squad_trans.py 
	   --dir pre \  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/squad_mask.pt \ [mask file]
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --train_file SQuAD/train-v1.1.json 
	   --predict_file SQuAD/dev-v1.1.json 
	   --per_gpu_train_batch_size 16 
	   --learning_rate 3e-5 
	   --num_train_epochs 4 
	   --max_seq_length 384 
	   --doc_stride 128 
	   --evaluate_during_training 
	   --eval_all_checkpoints 
	   --overwrite_output_dir 
	   --logging_steps 5500 
	   --save_steps 0 
	   --seed 57

Subnetwork with Ramdomly Suffuled Pre-trined Weight

python pertub_weight.py

Citation

If you use this code for your research, please cite our paper:

@misc{chen2020lottery,
    title={The Lottery Ticket Hypothesis for Pre-trained BERT Networks},
    author={Tianlong Chen and Jonathan Frankle and Shiyu Chang and Sijia Liu and Yang Zhang and Zhangyang Wang and Michael Carbin},
    year={2020},
    eprint={2007.12223},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowlegement

We would like to express our deepest gratitude to the MIT-IBM Watson AI Lab. In particular, we would like to thank John Cohn for his generous help in providing us with the computing resources necessary to conduct this research.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022