Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

Overview

VMAgent LOGO

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month real VM scheduling dataset called Huawei-East-1 from HUAWEI Cloud and it contains multiple practicle VM scheduling scenarios (such as Fading, Rcovering, etc). These scenarios also correspond to the challanges in the RL. Exploiting the design of RL methods in these secenarios help both the RL and VM scheduling communities. To emphasis, more details about VMAgent can be found in our paper VMAgent: Scheduling Simulator for Reinforcement Learning. Our another paper Learning to Schedule Multi-NUMA Virtual Machines via Reinforcement Learning has employed this VMAgent simultor to design RL-based VM scheduling algorithms.

Key Components of VMAgent:

  • SchedGym (Simulator): it provides many practical scenarios and flexible configurations to define custom scenarios.
  • SchedAgent (Algorithms): it provides many popular RL methods as the baselines.
  • SchedVis (Visulization): it provides the visualization of schedlueing dynamics on many metrics.

Scenarios and Baselines

The VMAgent provides multiple practical scenarios:

Scenario Allow-Deletion Allow-Expansion Server Num
Fading False False Small
Recovering True False Small
Expanding True True Small
Recovering-L True False Large

Researchers can also flexibly customized their scenarios in the vmagent/config/ folder.

Besides, we provides many baselines for quick startups. It includes FirstFit, BestFit, DQN, PPO, A2C and SAC. More baselines is coming.

Installation

git clone [email protected]:mail-ecnu/VMAgent.git
cd VMAgent
conda env create -f conda_env.yml
conda activate VMAgent-dev
python3 setup.py develop

Quick Examples

In this quick example, we show how to train a dqn agent in a fading scenario. For more examples and the configurations' concrete definitions, we refer readers to our docs.

config/fading.yaml:

N: 5
cpu: 40 
mem: 90
allow_release: False

config/algs/dqn.yaml:

mac: 'vectormac'
learner: 'q_learner'
agent: 'DQNAgent'

Then

python train.py --env=fading --alg=dqn

It provides the first VM scheudling simulator based on the one month east china data in HUAWEI Cloud. It includes three scenarios in practical cloud: Recovering, Fading and Expansion. Our video is at video. Some demonstrations are listed:

Docs

For more information of our VMAgent, we refer the readers to the document. It describes the detail of SchedGym, SchedAgent and SchedVis.

Data

We collect one month scheduling data in east china region of huawei cloud. The format and the stastical analysis of the data are presented in the docs. one month east china data in huawei cloud.

Visualization

For visualization, see the schedvis directory in detail.

References

  • Junjie Sheng, Shengliang Cai, Haochuan Cui, Wenhao Li, Yun Hua, Bo Jin, Wenli Zhou, Yiqiu Hu, Lei Zhu, Qian Peng, Hongyuan Zha and Xiangfeng Wang, VMAgent: Scheduling Simulator for Reinforcement Learning. arXiv preprint arXiv:2112.04785, 2021.
  • Junjie Sheng, Yiqiu Hu, Wenli Zhou, Lei Zhu, Bo Jin, Jun Wang and Xiangfeng Wang, Learning to Schedule Multi-NUMA Virtual Machines via Reinforcement Learning, Pattern Recognition, 121, 2021, pp.108254.

License

Licensed under the MIT License.

Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022