Discriminative Condition-Aware PLDA

Related tags

Deep LearningDCA-PLDA
Overview

DCA-PLDA

This repository implements the Discriminative Condition-Aware Backend described in the paper:

L. Ferrer, M. McLaren, and N. Brümmer, "A Speaker Verification Backend with Robust Performance across Conditions", in Computer Speech and Language, volume 71, 2021

This backend has the same functional form as the usual probabilistic discriminant analysis (PLDA) backend which is commonly used for speaker verification, including the preprocessing stages. It also integrates the calibration stage as part of the backend, where the calibration parameters depend on an estimated condition for the signal. The condition is internally represented by a very low dimensional vector. See the paper for more details on the mathematical formulation of the backend.

We have found this system to provide great out-of-the-box performance across a very wide range of conditions, when training the backend with a variety of data including Voxceleb, SRE (from the NIST speaker recognition evaluations), Switchboard, Mixer 6, RATS and FVC Australian datasets, as described in the above paper.

The code can also be used to train and evaluate a standard PLDA pipeline. Basically, the initial model before any training epochs is identical to a PLDA system, with an option for weighting the samples during training to compensate for imbalance across training domains.

Further, the current version of the code can also be used to do language detection. In this case, we have not yet explored the use of condition-awereness, but rather focused on a novel hierachical approach, which is described in the following paper:

L. Ferrer, D. Castan, M. McLaren, and A. Lawson, "A Hierarchical Model for Spoken Language Recognition", arXiv:2201.01364, 2021

Example scripts and configuration files to do both speaker verification and language detection are provided in the examples directory.

This code was written by Luciana Ferrer. We thank Niko Brummer for his help with the calibration code in the calibration.py file and for providing the code to do heavy-tail PLDA. The pre-computed embeddings provided to run the example were computed using SRI's software and infrastructure.

We will appreciate any feedback about the code or the approaches. Also, please let us know if you find bugs.

How to install

  1. Clone this repository:

    git clone https://github.com/luferrer/DCA-PLDA.git

  2. Install the requirements:

    pip install -r requirements.txt

  3. If you want to run the example code, download the pre-computed embeddings for the task you want to run from:

    https://sftp.speech.sri.com/forms/DCA-DPLDA

    Untar the file and move (or link) the resulting data/ dir inside the example dir for the task you want to run.

  4. You can then run the run_all script which runs several experiments using different configuration files and training sets. You can edit it to just try a single configuration, if you want. Please, see the top of that script for an explanation on what is run and where the output results end up. The run_all scripts will take a few hours to run (on a GPU) if all configurations are run. A RESULTS file is also provided for comparison. The run_all script should generate similar numbers to those in that file if all goes well.

About the examples

The example dir contains two example recipes, one for speaker verification and one for language detection.

Speaker Verification

The example provided with the repository includes the Voxceleb and FVC Australian subsets of the training data used in the paper, since the other datasets are not freely available. As such, the resulting system will only work well on conditions similar to those present in that data. For this reason, we test the resulting model on SITW and Voxceleb2 test dataset, which are very similar in nature to the Voxceleb data used for training. We also test on a set of FVC speakers which are held-out from training.

Language Detection

The example uses the Voxlingua107 dataset which contains a large number of languages.

How to change the examples to use your own data and embeddings

The example scripts run using embeddings for each task extracted at SRI International using standard x-vector architectures. See the papers cited above for a description of the characteristics of the corresponding embedding extractors. Unfortunately, we are unable to release the embedding extractors, but you should be able to replace these embeddings with any type of speaker or language embeddings (eg, those that can be extracted with Kaldi).

The audio files corresponding to the databases used in the speaker verification example above can be obtained for free:

For the language detection example, the Voxlingua107 audio samples can be obtained from http://bark.phon.ioc.ee/voxlingua107/.

Once you have extracted embeddings for all that data using your own procedure, you can set up all the lists and embeddings in the same way and with the same format (hdf5 or npz in the case of embeddings) as in the example data dir for your task of interest and use the run_all script.

Note on scoring multi-sample enrollment models

For now, for speaker verification, the DCA-PLDA model only knows how to calibrate trials that are given by a comparison of two individual speech waveforms since that is the way we create trials during training. The code in this repo can still score trials with multi-file enrollment models, but it does it in a hacky way. Basically, it scores each enrollment sample against the test sample for the trial and then averages the scores. This works reasonably well but it is not ideal. A generalization to scoring multi-sample enrollment trials within the model is left as future work.

Owner
Luciana Ferrer
Luciana Ferrer
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022