PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Overview

pytorch-a2c-ppo-acktr

Update (April 12th, 2021)

PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out my new RL repository in jax.

Please use hyper parameters from this readme. With other hyper parameters things might not work (it's RL after all)!

This is a PyTorch implementation of

  • Advantage Actor Critic (A2C), a synchronous deterministic version of A3C
  • Proximal Policy Optimization PPO
  • Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation ACKTR
  • Generative Adversarial Imitation Learning GAIL

Also see the OpenAI posts: A2C/ACKTR and PPO for more information.

This implementation is inspired by the OpenAI baselines for A2C, ACKTR and PPO. It uses the same hyper parameters and the model since they were well tuned for Atari games.

Please use this bibtex if you want to cite this repository in your publications:

@misc{pytorchrl,
  author = {Kostrikov, Ilya},
  title = {PyTorch Implementations of Reinforcement Learning Algorithms},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail}},
}

Supported (and tested) environments (via OpenAI Gym)

I highly recommend PyBullet as a free open source alternative to MuJoCo for continuous control tasks.

All environments are operated using exactly the same Gym interface. See their documentations for a comprehensive list.

To use the DeepMind Control Suite environments, set the flag --env-name dm.<domain_name>.<task_name>, where domain_name and task_name are the name of a domain (e.g. hopper) and a task within that domain (e.g. stand) from the DeepMind Control Suite. Refer to their repo and their tech report for a full list of available domains and tasks. Other than setting the task, the API for interacting with the environment is exactly the same as for all the Gym environments thanks to dm_control2gym.

Requirements

In order to install requirements, follow:

# PyTorch
conda install pytorch torchvision -c soumith

# Other requirements
pip install -r requirements.txt

Contributions

Contributions are very welcome. If you know how to make this code better, please open an issue. If you want to submit a pull request, please open an issue first. Also see a todo list below.

Also I'm searching for volunteers to run all experiments on Atari and MuJoCo (with multiple random seeds).

Disclaimer

It's extremely difficult to reproduce results for Reinforcement Learning methods. See "Deep Reinforcement Learning that Matters" for more information. I tried to reproduce OpenAI results as closely as possible. However, majors differences in performance can be caused even by minor differences in TensorFlow and PyTorch libraries.

TODO

  • Improve this README file. Rearrange images.
  • Improve performance of KFAC, see kfac.py for more information
  • Run evaluation for all games and algorithms

Visualization

In order to visualize the results use visualize.ipynb.

Training

Atari

A2C

python main.py --env-name "PongNoFrameskip-v4"

PPO

python main.py --env-name "PongNoFrameskip-v4" --algo ppo --use-gae --lr 2.5e-4 --clip-param 0.1 --value-loss-coef 0.5 --num-processes 8 --num-steps 128 --num-mini-batch 4 --log-interval 1 --use-linear-lr-decay --entropy-coef 0.01

ACKTR

python main.py --env-name "PongNoFrameskip-v4" --algo acktr --num-processes 32 --num-steps 20

MuJoCo

Please always try to use --use-proper-time-limits flag. It properly handles partial trajectories (see https://github.com/sfujim/TD3/blob/master/main.py#L123).

A2C

python main.py --env-name "Reacher-v2" --num-env-steps 1000000

PPO

python main.py --env-name "Reacher-v2" --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits

ACKTR

ACKTR requires some modifications to be made specifically for MuJoCo. But at the moment, I want to keep this code as unified as possible. Thus, I'm going for better ways to integrate it into the codebase.

Enjoy

Load a pretrained model from my Google Drive.

Also pretrained models for other games are available on request. Send me an email or create an issue, and I will upload it.

Disclaimer: I might have used different hyper-parameters to train these models.

Atari

python enjoy.py --load-dir trained_models/a2c --env-name "PongNoFrameskip-v4"

MuJoCo

python enjoy.py --load-dir trained_models/ppo --env-name "Reacher-v2"

Results

A2C

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

PPO

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

ACKTR

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

Owner
Ilya Kostrikov
Post doc
Ilya Kostrikov
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022