A library for researching neural networks compression and acceleration methods.

Overview

Model Compression Research Package

This package was developed to enable scalable, reusable and reproducable research of weight pruning, quantization and distillation methods with ease.

Installation

To install the library clone the repository and install using pip

git clone https://github.com/IntelLabs/Model-Compression-Research-Package
cd Model-Compression-Research-Package
pip install [-e] .

Add -e flag to install an editable version of the library.

Quick Tour

This package contains implementations of several weight pruning methods, knowledge distillation and quantization-aware training. Here we will show how to easily use those implementations with your existing model implementation and training loop. It is also possible to combine several methods together in the same training process. Please refer to the packages examples.

Weight Pruning

Weight pruning is a method to induce zeros in a models weight while training. There are several methods to prune a model and it is a widely explored research field.

To list the existing weight pruning implemtations in the package use model_compression_research.list_methods(). For example, applying unstructured magnitude pruning while training your model can be done with a few single lines of code

from model_compression_research import IterativePruningConfig, IterativePruningScheduler

training_args = get_training_args()
model = get_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Initialize a pruning configuration and a scheduler and apply it on the model
pruning_config = IterativePruningConfig(
    pruning_fn="unstructured_magnitude",
    pruning_fn_default_kwargs={"target_sparsity": 0.9}
)
pruning_scheduler = IterativePruningScheduler(model, pruning_config)

# Initialize optimizer after initializing the pruning scheduler
optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = 
        model.train()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # Call pruning scheduler step
        pruning_schduler.step()
        optimizer.zero_grad()

# At the end of training rmeove the pruning parts and get the resulted pruned model
pruning_scheduler.remove_pruning()

For using knowledge distillation with HuggingFace/transformers dedicated transformers Trainer see the implementation of HFTrainerPruningCallback in api_utils.py.

Knowledge Distillation

Model distillation is a method to distill the knowledge learned by a teacher to a smaller student model. A method to do that is to compute the difference between the student's and teacher's output distribution using KL divergence. In this package you can find a simple implementation that does just that.

Assuming that your teacher and student models' outputs are of the same dimension, you can use the implementation in this package as follows:

from model_compression_research import TeacherWrapper, DistillationModelWrapper

training_args = get_training_args()
teacher = get_teacher_trained_model()
student = get_student_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Wrap teacher model with TeacherWrapper and set loss scaling factor and temperature
teacher = TeacherWrapper(teacher, ce_alpha=0.5, ce_temperature=2.0)
# Initialize the distillation model with the student and teacher
distillation_model = DistillationModelWrapper(student, teacher, alpha_student=0.5)

optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = batch
        distillation_model.train()
        # Calculate student loss w.r.t labels as you usually do
        student_outputs = distillation_model(inputs)
        loss_wrt_labels = criterion(student_outputs, labels)
        # Add knowledge distillation term
        loss = distillation_model.compute_loss(loss_wrt_labels, student_outputs)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

For using knowledge distillation with HuggingFace/transformers see the implementation of HFTeacherWrapper and hf_add_teacher_to_student in api_utils.py.

Quantization-Aware Training

Quantization-Aware Training is a method for training models that will be later quantized at the inference stage, as opposed to other post-training quantization methods where models are trained without any adaptation to the error caused by model quantization.

A similar quantization-aware training method to the one introduced in Q8BERT: Quantized 8Bit BERT generelized to custom models is implemented in this package:

from model_compression_research import QuantizerConfig, convert_model_for_qat

training_args = get_training_args()
model = get_model()
dataloader = get_dataloader()
criterion = get_criterion()

# Initialize quantizer configuration
qat_config = QuantizerConfig()
# Convert model to quantization-aware training model
qat_model = convert_model_for_qat(model, qat_config)

optimizer = get_optimizer()

# Training loop
for e in range(training_args.epochs):
    for batch in dataloader:
        inputs, labels = 
        model.train()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

Papers Implemented in Model Compression Research Package

Methods from the following papers were implemented in this package and are ready for use:

Citation

If you want to cite our paper and library, you can use the following:

@article{zafrir2021prune,
  title={Prune Once for All: Sparse Pre-Trained Language Models},
  author={Zafrir, Ofir and Larey, Ariel and Boudoukh, Guy and Shen, Haihao and Wasserblat, Moshe},
  journal={arXiv preprint arXiv:2111.05754},
  year={2021}
}
@software{zafrir_ofir_2021_5721732,
  author       = {Zafrir, Ofir},
  title        = {Model-Compression-Research-Package by Intel Labs},
  month        = nov,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.1.0},
  doi          = {10.5281/zenodo.5721732},
  url          = {https://doi.org/10.5281/zenodo.5721732}
}
Comments
  • Uniform magnitude pruning implementation problem

    Uniform magnitude pruning implementation problem

    Hello, when the uniform magnitude pruning method is set to "pruning_fn_default_kwargs": { "block_size": 8, "target_sparsity": 0.85 }, The model ends up retaining the parameter 0.75, why?

    opened by LYF915 13
  • Difference between end_pruning_step and policy_end_step

    Difference between end_pruning_step and policy_end_step

    Hi, Could you please clarify the difference between end_pruning_step and policy_end_step in the pruning config file (for example: https://github.com/IntelLabs/Model-Compression-Research-Package/blob/main/examples/transformers/language-modeling/config/iterative_unstructured_magnitude_90_config.json)?

    opened by eldarkurtic 6
  • Issue of max_seq_length in MLM pretraining data preprocessing

    Issue of max_seq_length in MLM pretraining data preprocessing

    Hi, I find that in the functions segment_pair_nsp_process and doc_sentences_process in examples/transformers/language-modeling/dataset_processing.py, the sequence length of the processed data is actually max_seq_length - tokenizer.num_special_tokens_to_add(pair=False) since variable max_seq_length is replaced by this value and have been passed to the tokenizer.prepare_for_model function. Such as user set max_seq_length=128, and the processed data will have a sequence length of 125. I'm not sure is it the standard way of pretraining data preprocessing?

    opened by XinyuYe-Intel 5
  • How to save QAT quantized model?

    How to save QAT quantized model?

    Hi, thank you for your model compression package. I am a little confused about how to save QAT quantized model. Do you have an official website or documentation for this package?

    opened by OctoberKat 4
  • LR scheduler clarification

    LR scheduler clarification

    Hi, Running the Language Modelling example (https://github.com/IntelLabs/Model-Compression-Research-Package/tree/main/examples/transformers/language-modeling) ends with a slightly different LR schedule compared to the one presented in the Figure 2.b of the "Prune Once For All" paper. (particularly the warmup phase seems to be a bit different)

    train/learning_rate logged by Weights&Biases: Screenshot 2021-12-20 at 11 25 39

    Learning rate in the paper, Figure 2.b: Screenshot 2021-12-20 at 11 31 35

    opened by eldarkurtic 4
  • Sparse models available for download?

    Sparse models available for download?

    Hello :-)

    I found your Prune-Once-For-All paper very interesting and would like to play with the sparse models that it produced. Are you going to open-source them soon?

    I have noticed you have open-sourced the sparse-pretrained models, but I couldn't find the corresponding models finetuned on downstream tasks (SQuAD, MNLI, QQP, etc.).

    opened by eldarkurtic 2
  • How to interpret hyperparams?

    How to interpret hyperparams?

    Hi, I have a few questions about hyperparams in the Table 6:

    1. Since there are three models: {BERT-Base, BERT-Large, DistilBERT}, how to interpret learning rate for SQuAD with only two values: {1.5e-4, 1.8e-4}?
    2. I assume that for GLUE {1e-4, 1.2e-4, 1.5e-5} are learning rate values for each model respectively. Is this correct?
    3. Since weight decay row has only two values {0, 0.01}, I assume 0 is for all models on SQuAD and 0.01 is for all models on GLUE?
    4. Since warmup ratio row has three values {0, 0.01, 0.1}, I assume these are for each model respectively, no matter which dataset is used?
    5. Does "Epochs {3, 6, 9}" for GLUE mean BERT-base tuned for 3 epochs, BERT-Large for 6 and DistilBERT for 9 epochs?
    opened by eldarkurtic 2
  • Upstream pruning

    Upstream pruning

    Hi! First of all, thanks for open-sourcing your code for the "Prune Once for All" paper. I would like to ask a few questions:

    1. Are you planning to release your teacher model for upstream task? I have noticed that at https://huggingface.co/Intel , only the sparse checkpoints have been released. I would like to run some experiments with your compression package.
    2. From the published scripts, I have noticed that you have been using only English Wikipedia dataset for pruning at upstream tasks (MLM and NSP) but the bert-base-uncased model you use as a starting point is pre-trained on BookCorpus and English Wikipedia. Is there any specific reason why you haven't included BookCorpus dataset too?
    opened by eldarkurtic 1
  • Code analysis identified several places where objects were either not

    Code analysis identified several places where objects were either not

    declared or were declared as None which could result in an unsupported operation error from python.

    Change descriptions:

    • added forward declarations of 4 variables in both the modeling_bert and modeling_roberta
    • removed assignment of all_hidden_states to None if output_hidden_states is none
    • removed assignment of all_attentions to None if output_attentions is none
    • removed assignment of all_self_attentions to None if output_attentions is None
    • removed assignment of all_cross_attentions to Non if output_attentions is None
    opened by michaelbeale-IL 0
  • Fix distillation of different HF/transformers models

    Fix distillation of different HF/transformers models

    Until now, if the teacher had a different signature than the student, transformers.trainer would delete the input that is not matching to the student's signature leading to the teacher not getting all the input it needs.

    For example, training a DistilBERT student with a BERT-Base teacher will not work properly since BERT-Base requires token_type_ids which DistilBERT doesn't require. The trainer deletes the token_type_ids from the input and BERT teacher would get an all zeros token type ids leading to wrong predictions.

    This PR fixes this issue.

    opened by ofirzaf 0
  • Small optimizations

    Small optimizations

    • Implement fast threshold compute: Execute best threshold compute according to target hardware (cpu/cuda) and implement fast compute using histogram
    • Refactor block pruning computation: move computation to utils and reuse in the rest of the pruning methods
    opened by ofirzaf 0
Releases(v0.1.0)
  • v0.1.0(Nov 23, 2021)

    First release of Intel Labs' Model Compression Research Package, the current version includes model compression methods from previous published papers and our own research papers implementations:

    • Pruning, quantization and knowledge distillation methods and schedulers that may fit various PyTorch models out-of-the-box
    • Integration to HuggingFace/transformers library for most of the available methods
    • Various examples showing how to use the library
    • Prune Once for All: Sparse Pre-Trained Language Models reproduction guide and scripts
    Source code(tar.gz)
    Source code(zip)
Owner
Intel Labs
Intel Labs
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023