A PaddlePaddle version image model zoo.

Overview

Paddle-Image-Models

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

English | 简体中文

A PaddlePaddle version image model zoo.

Install Package

Usage

  • Quick Start

    import paddle
    from ppim import rednet_26
    
    # Load the model
    model, val_transforms = rednet_26(pretrained=True)
    
    # Model summary 
    paddle.summary(model, input_size=(1, 3, 224, 224))
    
    # Random a input
    x = paddle.randn(shape=(1, 3, 224, 224))
    
    # Model forword
    out = model(x)
  • Finetune

    import paddle
    import paddle.nn as nn
    import paddle.vision.transforms as T
    from paddle.vision import Cifar100
    
    from ppim import rexnet_1_0
    
    # Load the model
    model, val_transforms = rexnet_1_0(pretrained=True, class_dim=100)
    
    # Use the PaddleHapi Model
    model = paddle.Model(model)
    
    # Set the optimizer
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    
    # Set the loss function
    loss = nn.CrossEntropyLoss()
    
    # Set the evaluate metric
    metric = paddle.metric.Accuracy(topk=(1, 5))
    
    # Prepare the model 
    model.prepare(optimizer=opt, loss=loss, metrics=metric)
    
    # Set the data preprocess
    train_transforms = T.Compose([
        T.Resize(256, interpolation='bicubic'),
        T.RandomCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # Load the Cifar100 dataset
    train_dataset = Cifar100(mode='train', transform=train_transforms, backend='pil')
    val_dataset = Cifar100(mode='test',  transform=val_transforms, backend='pil')
    
    # Finetune the model 
    model.fit(
        train_data=train_dataset, 
        eval_data=val_dataset, 
        batch_size=256, 
        epochs=2, 
        eval_freq=1, 
        log_freq=1, 
        save_dir='save_models', 
        save_freq=1, 
        verbose=1, 
        drop_last=False, 
        shuffle=True,
        num_workers=0
    )

Model Zoo

You might also like...
Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • 无法引入ppim

    无法引入ppim


    AttributeError Traceback (most recent call last) in 1 import paddle ----> 2 from ppim import rednet_26 3 4 # 使用 PPIM whl 包加载模型 5 model, val_transforms = rednet_26(pretrained=True, return_transforms=True)

    ~.conda\envs\paddle\lib\site-packages\ppim_init_.py in ----> 1 import ppim.models as models 2 3 from ppim.models import * 4 from inspect import isfunction, isclass 5

    ~.conda\envs\paddle\lib\site-packages\ppim\models_init_.py in 3 from ppim.models.tnt import tnt_s, TNT 4 from ppim.models.t2t import t2t_vit_7, t2t_vit_10, t2t_vit_12, t2t_vit_14, t2t_vit_19, t2t_vit_24, t2t_vit_t_14, t2t_vit_t_19, t2t_vit_t_24, t2t_vit_14_384, t2t_vit_24_token_labeling ----> 5 from ppim.models.pvt import pvt_ti, pvt_s, pvt_m, pvt_l, PyramidVisionTransformer 6 from ppim.models.pit import pit_ti, pit_s, pit_xs, pit_b, pit_ti_distilled, pit_s_distilled, pit_xs_distilled, pit_b_distilled, PoolingTransformer, DistilledPoolingTransformer 7 from ppim.models.coat import coat_ti, coat_m, coat_lite_ti, coat_lite_m, CoaT

    ~.conda\envs\paddle\lib\site-packages\ppim\models\pvt.py in 5 import paddle.vision.transforms as T 6 ----> 7 import ppim.models.vit as vit 8 9 from ppim.models.common import add_parameter, load_model

    AttributeError: module 'ppim' has no attribute 'models'

    opened by hanknewbird 0
Releases(1.1.0)
Owner
AgentMaker
Focus on deep learning tools
AgentMaker
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
BEGAN in PyTorch

BEGAN in PyTorch This project is still in progress. If you are looking for the working code, use BEGAN-tensorflow. Requirements Python 2.7 Pillow tqdm

Taehoon Kim 260 Dec 07, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022