nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

Related tags

Deep LearningnnFormer
Overview

nnFormer: Interleaved Transformer for Volumetric Segmentation

Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please read our preprint at the following link: paper_address.

Parts of codes are borrowed from nn-UNet.


Installation

1、System requirements

This software was originally designed and run on a system running Ubuntu 18.01, with Python 3.6, PyTorch 1.8.1, and CUDA 10.1. For a full list of software packages and version numbers, see the Conda environment file environment.yml.

This software leverages graphical processing units (GPUs) to accelerate neural network training and evaluation; systems lacking a suitable GPU will likely take an extremely long time to train or evaluate models. The software was tested with the NVIDIA RTX 2080 TI GPU, though we anticipate that other GPUs will also work, provided that the unit offers sufficient memory.

2、Installation guide

We recommend installation of the required packages using the Conda package manager, available through the Anaconda Python distribution. Anaconda is available free of charge for non-commercial use through Anaconda Inc. After installing Anaconda and cloning this repository, For use as integrative framework:

git clone https://github.com/282857341/nnFormer.git
cd nnFormer
conda env create -f environment.yml
source activate nnFormer
pip install -e .

3、The main downloaded file directory description

  • ACDC_dice: Calculate dice of ACDC dataset

  • Synapse_dice_and_hd: Calulate dice of the Synapse dataset

  • dataset_json: About how to divide the training and test set

  • inference: The entry program of the infernece.

  • network_architecture: The models are stored here.

  • run: The entry program of the training.

  • training: The trainers are stored here, the training of the network is conducted by the trainer.


Training

1、Datasets

Datasets can be downloaded at the following links:

And the division of the dataset can be seen in the files in the ./dataset_json/

Dataset I ACDC

Dataset II The Synapse multi-organ CT dataset

2、Setting up the datasets

While we provide code to load data for training a deep-learning model, you will first need to download images from the above repositories. Regarding the format setting and related preprocessing of the dataset, we operate based on nnFormer, so I won’t go into details here. You can see nnUNet for specific operations.

Regarding the downloaded data, I will not introduce too much here, you can go to the corresponding website to view it. Organize the downloaded DataProcessed as follows:

./Pretrained_weight/
./nnFormer/
./DATASET/
  ├── nnFormer_raw/
      ├── nnFormer_raw_data/
          ├── Task01_ACDC/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
          ├── Task02_Synapse/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
      ├── nnFormer_cropped_data/
  ├── nnFormer_trained_models/
  ├── nnFormer_preprocessed/

After that, you can preprocess the data using:

nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task01_ACDC
nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task02_Synapse
nnFormer_plan_and_preprocess -t 1
nnFormer_plan_and_preprocess -t 2

3 Generating plan files of our network

python ./nnformer/change_plan_swin.py 1
python ./nnformer/change_plan_swin.py 2

4 Training and Testing the models

A. Use the best model we have trained to infer the test set
(1).Put the downloaded the best training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model.pkl

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model.pkl
(2).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice result will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

B. The complete process of retraining the model and inference
(1).Put the downloaded pre-training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../Pretrained_weight/pretrain_ACDC.model
../Pretrained_weight/pretrain_Synapse.model
(2).Training
  • ACDC
nnFormer_train 3d_fullres nnFormerTrainerV2_ACDC 1 0 
  • The Synapse multi-organ CT dataset
nnFormer_train 3d_fullres nnFormerTrainerV2_Synapse 2 0 
(3).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice results will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

Owner
jsguo
jsguo
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023