ZEBRA: Zero Evidence Biometric Recognition Assessment

Overview

ZEBRA: Zero Evidence Biometric Recognition Assessment

license: LGPLv3 - please reference our paper
version: 2020-06-11
author: Andreas Nautsch (EURECOM)

Disclaimer - this toolkit is a standalone implementation of our paper

Nautsch, Patino, Tomashenko, Yamagishi, Noe, Bonastre, Todisco and Evans:
"The Privacy ZEBRA: Zero Evidence Biometric Recognition Assessment"
in Proc. Interspeech 2020

[Online] pre-print

This work is academic (non-for-profit);
a reference implementation without warranty.

What is the ZEBRA framework?

How can we assess for privacy preservation in the processing of human signals, such as speech data?

Mounting privacy legislation calls for the preservation of privacy in speech technology, though solutions are gravely lacking. While evaluation campaigns are long-proven tools to drive progress, the need to consider a privacy adversary implies that traditional approaches to evaluation must be adapted to the assessment of privacy and privacy preservation solutions. This paper presents the first step in this direction: metrics.

We propose the ZEBRA framework which is inspired by forensic science.

On the contrary to method validation in modern cryptography, which is backboned by zero-knowledge proofs (see Shanon), we need to tackle zero-evidence. The former defines input data (e.g., an A is represented by the number 65); the latter models input data (we can only describe e.g., acoustic data, biometric identities, and semantic meaning).

Communication is more than the written word; we need to leave the stiff perspective of the written word behind, when the medium changes to speech and to other human signals (e.g., video surveillance).

Privacy preservation for human data is not binary

Only levels of privacy preservation can be quantified (theoretic proofs for a yes/no decision are unavailble).

The ZEBRA framework compares candidate privacy safeguards in an after-the-fact evaluation:

  • candidate algorithms protect human signals (e.g., speech) regarding the disclosure of specific sensitive information (e.g., the biometric identity);
  • knowing the facts of how much sensitive information could be exposed, how much is exposed after using each candidate safeguard?

Privacy & the realm of the adversary

The conventional signal processing or machine learning perspectives as system evaluators does not suffice anymore!

Adversaries are evaluators of safeguard evaluators.

We need to shift our perspective.

To optimize algorithms and their parameters, we are used to improve some average/expected performance loss.

  1. Expectation values reflect on a population level, yet, privacy is a fundamental human right that is: for each individual - how badly is information disclosed for those who belong to a minority in the eyes of a candidate privacy safeguard?
  2. An adversary can only infer information based on observations - figuratively speaking like a judge/jury assesses evidence.
  3. By formalizing decision inference based on evidence, the strength of evidence is estimated - it allows to reflect to which extent one of two decisions should be favored over another; given the circumstances of a case - an individual performance.
  4. Given the circumstances is formalized by the prior belief; like forensic practitioners cannot know the prior belief of a judge/jury, we cannot know the prior belief of an adversary.
  5. Empirical Cross-Entropy (ECE) plots are introduced in forensic voice biometrics to simulate ECE for all possible prior beliefs, such that one can report an expected gain in relative information - an average/expected performance.
  6. Categorical tags are introduced in forensic science and constantly refined since the 1960s to summarize different levels of strength of evidence into a scale that is easier to digest by the human mind.

ZEBRA, a zero-evidence framework to assess for preserving privacy on empirical data

The proposed ZEBRA framework has two metrics:

  • on the population level, the expected ECE is quantified by integrating out all possible prior beliefs; the result is: expected empirical cross-entropy [in bits] which is 0 bit for full privacy; and 1/log(4) ~ 0.721 bit for no privacy.
  • on the individual level, the worst-case strength of evidence is quantified. In forensic science, the strength of evidence is referred to a so-called log-likelihood ratio (LLR) which symmetrically encodes the relative strength of evidence of one possible decision outcome over the other; an LLR of 0 means zero strength of evidence for either possible deicision outcome - on the contrary, values towards inifnity would resembe towards 'inifnitely decisive' evidence (no privacy). The worst-case strength of evidence is the maximum(absolute(LLR)).

Categorical tags summarizes the maximum(absolute(LLR)) value; an example adopted from the literature:

Tag Description (for a 50:50 prior belief)
0 50:50 decision making of the adversary
A adversary makes better decisions than 50:50
B adversary makes 1 wrong decision out of 10 to 100
C adversary makes 1 wrong decision out of 100 to 1000
D adversary makes 1 wrong decision out of 1000 to 100.000
E adversary makes 1 wrong decision out of 100.000 to 1.000.000
F adversary makes 1 wrong decision in at least 1.000.000

The better an adversary can make decisions, despite the privacy preservation of a candidate safeguard applied, the worse is the categorical tag.

Scope of this ZEBRA reference implementation

  1. Computation and visualization of the ZEBRA framework.

    • Metrics in ZEBRA profile: (population, individual, tag)
    • ZEBRA profile in ECE plots
      full privacy: black profile
      no privacy: y = 0 (profiles equal to the x-axis)
      alt text

    For display only, LLRs are in base 10.

  2. Saving to: LaTeX, PDF and PNG formats.

  3. Automatic assessment of the 2020 VoicePrivacy Challenge
    ReadMe: use ZEBRA for kaldi experiments

  4. Computation and visualizations of conventional metrics:
    ReadMe: conventional plots & metrics

    • ECE plots (Ramos et al.)
      metrics: ECE & min ECE
    • APE plots (Brümmer et al.)
      metrics: DCF & min DCF
    • Computation only
      metrics: Cllr, min Cllr & ROCCH-EER

Installation

The installation uses Miniconda, which creates Python environments into a folder structure on your hard drive.

Deinstallation is easy: delete the miniconda folder.

  1. install miniconda, see:
    https://docs.conda.io/projects/conda/en/latest/user-guide/install/#regular-installation
  2. create a Python environment

    conda create python=3.7 --name zebra -y

  3. activate the environment

    conda activate zebra

  4. installing required packages

    conda install -y numpy pandas matplotlib seaborn tabulate

HowTo: use

A quick reference guide for using Python, the command line and to customization.

Command line: metric computation

Computing the metrics (command structure):

python zero_evidence.py -s [SCORE_FILE] -k [KEY_FILE]

An example is provided with scores.txt and key.txt as score and key files:

scr=exp/Baseline/primary/results-2020-05-10-14-29-38/ASV-libri_test_enrolls-libri_test_trials_f/scores
key=keys-voiceprivacy-2020/libri_test_trials_f

python zero_evidence.py -s $scr -k $key

Result:

ZEBRA profile
Population: 0.584 bit
Individual: 3.979 (C)

Command line: visualization

Display each plot: -p option: python zero_evidence.py -s $scr -k $key -p

Command line: customization

  1. Custom label for an experiment: -l option:

    python zero_evidence.py -s $scr -k $key -l "libri speech, primary baseline"
    

    libri speech, primary baseline
    Population: 0.584 bit
    Individual: 3.979 (C)

  2. Save the profile visualization (without their display): -e png

    python zero_evidence.py -s $scr -k $key -l "profile" -e png
    

    -l profile for a file name: ZEBRA-profile
    note: "ZEBRA-" is an automatic prefix to the exported plot file names

    Supported file types:

    • -e tex: LaTeX
    • -e pdf: PDF
    • -e png: PNG
  3. To save a plot with its display, use both options: -p -e png

Python: high-level implementation

Calling the API provided by zebra.py

from zebra import PriorLogOddsPlots, zebra_framework, export_zebra_framework_plots

# initialize the ZEBRA framework 
zebra_plot = PriorLogOddsPlots()  

# declare score & key paths
scr = 'exp/Baseline/primary/results-2020-05-10-14-29-38/ASV-libri_test_enrolls-libri_test_trials_f/scores'
key = 'keys-voiceprivacy-2020/libri_test_trials_f'

# run the framework
zebra_framework(plo_plot=zebra_plot, scr_path=scr, key_path=key)

# saving the ZEBRA plot
export_zebra_framework_plots(plo_plot=zebra_plot, filename='my-experiment', save_plot_ext='png')

Python: low-level implementation

Code snippets from zebra.py

Let's assume classA_scores & classB_scores are numpy arrays of scores.

from numpy import log, abs, hstack, argwhere
from zebra import PriorLogOddsPlots

zebra_plot = PriorLogOddsPlots(classA_scores, classB_scores)

# population metric
dece = zebra_plot.get_delta_ECE()

# individual metric
max_abs_LLR = abs(hstack((plo_plot.classA_llr_laplace, plo_plot.classB_llr_laplace))).max()

# categorical tag
max_abs_LLR_base10 = max_abs_LLR / log(10)
cat_idx = argwhere((cat_ranges < max_abs_LLR_base10).sum(1) == 1).squeeze()
cat_tag = list(categorical_tags.keys())[cat_idx]

# nicely formatted string representations
str_dece = ('%.3f' if dece >= 5e-4 else '%.e') % dece
str_max_abs_llr = ('%.3f' if max_abs_LLR >= 5e-4 else '%.e') % max_abs_LLR

if dece == 0:
    str_dece = '0'

if max_abs_LLR == 0:
    str_max_abs_llr = '0'

For getting the privacy related version on DCF plots, simply run: zebra_plot.get_delta_DCF().

Python: on changing categorical tags

  1. Make a copy of zebra.py
  2. Edit the following part to your liking

    the arrays such as array([0, eps]) contain lower and upper bounds; for numerical convenience only, an epsilon value is used.
    The limits are in base-10 LLR intervals.

    # Here are our categorical tags, inspired by the ENFSI sacle on the stength of evidence
    # Please feel free to try out your own scale as well :)
    # dict: { TAG : [min max] value of base10 LLRs }
    categorical_tags = {
        '0': array([0, eps]),
        'A': array([eps, 1]),
        'B': array([1, 2]),
        'C': array([2, 4]),
        'D': array([4, 5]),
        'E': array([5, 6]),
        'F': array([6, inf])
    }
    
    # pre-computation for easier later use
    cat_ranges = vstack(list(categorical_tags.values()))
    

Documentation

This package is based on:

In performance.py, one can find derived and adjusted code snippets.

For legacy compatability, the code is structured to also provide DCF and ECE visualizations.

Naturally, Cllr, min Cllr and the ROCCH-EER can also be computed with the ZEBRA toolkit. For optimization, please see pyBOSARIS; eventually, to optimize ZEBRA, we would recommend to optimize Cllr. (see Niko Brümmer's disseration or the BOSARIS toolkit user guide regarding convexity).

This toolkit is organized as follows:

  • demo_conventional_plots.py
    Creation of conventional ECE & APE plots
  • demo_voiceprivacy_challenge.py
    Automatic ZEBRA evaluation of an entire challenge
  • demo_zebra.py
    Example on creating a ZEBRA plot and exporting to tex, pdf, png
  • helpers.py
    Helpers to read score files from the kaldi folder structure
  • performance.py
    Library of integrated performance functions, see related software
  • plo_plots.py
    Implementation of ECE & APE plots in one class: PriorLogOddsPlots; with plot export functionality
  • zebra.py
    Wrapper functions to interact with PriorLogOddsPlots in ZEBRA style
  • zero_evidence.py
    Command line script for ZEBRA framework

Acknowledgements

This work is partly funded by the projects: ANR-JST VoicePersonae, ANR Harpocrates and ANR-DFG RESPECT.

Owner
Voice Privacy Challenge
The VoicePrivacy initiative aims to promote the development of privacy preservation tools for speech technology.
Voice Privacy Challenge
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022