ZEBRA: Zero Evidence Biometric Recognition Assessment

Overview

ZEBRA: Zero Evidence Biometric Recognition Assessment

license: LGPLv3 - please reference our paper
version: 2020-06-11
author: Andreas Nautsch (EURECOM)

Disclaimer - this toolkit is a standalone implementation of our paper

Nautsch, Patino, Tomashenko, Yamagishi, Noe, Bonastre, Todisco and Evans:
"The Privacy ZEBRA: Zero Evidence Biometric Recognition Assessment"
in Proc. Interspeech 2020

[Online] pre-print

This work is academic (non-for-profit);
a reference implementation without warranty.

What is the ZEBRA framework?

How can we assess for privacy preservation in the processing of human signals, such as speech data?

Mounting privacy legislation calls for the preservation of privacy in speech technology, though solutions are gravely lacking. While evaluation campaigns are long-proven tools to drive progress, the need to consider a privacy adversary implies that traditional approaches to evaluation must be adapted to the assessment of privacy and privacy preservation solutions. This paper presents the first step in this direction: metrics.

We propose the ZEBRA framework which is inspired by forensic science.

On the contrary to method validation in modern cryptography, which is backboned by zero-knowledge proofs (see Shanon), we need to tackle zero-evidence. The former defines input data (e.g., an A is represented by the number 65); the latter models input data (we can only describe e.g., acoustic data, biometric identities, and semantic meaning).

Communication is more than the written word; we need to leave the stiff perspective of the written word behind, when the medium changes to speech and to other human signals (e.g., video surveillance).

Privacy preservation for human data is not binary

Only levels of privacy preservation can be quantified (theoretic proofs for a yes/no decision are unavailble).

The ZEBRA framework compares candidate privacy safeguards in an after-the-fact evaluation:

  • candidate algorithms protect human signals (e.g., speech) regarding the disclosure of specific sensitive information (e.g., the biometric identity);
  • knowing the facts of how much sensitive information could be exposed, how much is exposed after using each candidate safeguard?

Privacy & the realm of the adversary

The conventional signal processing or machine learning perspectives as system evaluators does not suffice anymore!

Adversaries are evaluators of safeguard evaluators.

We need to shift our perspective.

To optimize algorithms and their parameters, we are used to improve some average/expected performance loss.

  1. Expectation values reflect on a population level, yet, privacy is a fundamental human right that is: for each individual - how badly is information disclosed for those who belong to a minority in the eyes of a candidate privacy safeguard?
  2. An adversary can only infer information based on observations - figuratively speaking like a judge/jury assesses evidence.
  3. By formalizing decision inference based on evidence, the strength of evidence is estimated - it allows to reflect to which extent one of two decisions should be favored over another; given the circumstances of a case - an individual performance.
  4. Given the circumstances is formalized by the prior belief; like forensic practitioners cannot know the prior belief of a judge/jury, we cannot know the prior belief of an adversary.
  5. Empirical Cross-Entropy (ECE) plots are introduced in forensic voice biometrics to simulate ECE for all possible prior beliefs, such that one can report an expected gain in relative information - an average/expected performance.
  6. Categorical tags are introduced in forensic science and constantly refined since the 1960s to summarize different levels of strength of evidence into a scale that is easier to digest by the human mind.

ZEBRA, a zero-evidence framework to assess for preserving privacy on empirical data

The proposed ZEBRA framework has two metrics:

  • on the population level, the expected ECE is quantified by integrating out all possible prior beliefs; the result is: expected empirical cross-entropy [in bits] which is 0 bit for full privacy; and 1/log(4) ~ 0.721 bit for no privacy.
  • on the individual level, the worst-case strength of evidence is quantified. In forensic science, the strength of evidence is referred to a so-called log-likelihood ratio (LLR) which symmetrically encodes the relative strength of evidence of one possible decision outcome over the other; an LLR of 0 means zero strength of evidence for either possible deicision outcome - on the contrary, values towards inifnity would resembe towards 'inifnitely decisive' evidence (no privacy). The worst-case strength of evidence is the maximum(absolute(LLR)).

Categorical tags summarizes the maximum(absolute(LLR)) value; an example adopted from the literature:

Tag Description (for a 50:50 prior belief)
0 50:50 decision making of the adversary
A adversary makes better decisions than 50:50
B adversary makes 1 wrong decision out of 10 to 100
C adversary makes 1 wrong decision out of 100 to 1000
D adversary makes 1 wrong decision out of 1000 to 100.000
E adversary makes 1 wrong decision out of 100.000 to 1.000.000
F adversary makes 1 wrong decision in at least 1.000.000

The better an adversary can make decisions, despite the privacy preservation of a candidate safeguard applied, the worse is the categorical tag.

Scope of this ZEBRA reference implementation

  1. Computation and visualization of the ZEBRA framework.

    • Metrics in ZEBRA profile: (population, individual, tag)
    • ZEBRA profile in ECE plots
      full privacy: black profile
      no privacy: y = 0 (profiles equal to the x-axis)
      alt text

    For display only, LLRs are in base 10.

  2. Saving to: LaTeX, PDF and PNG formats.

  3. Automatic assessment of the 2020 VoicePrivacy Challenge
    ReadMe: use ZEBRA for kaldi experiments

  4. Computation and visualizations of conventional metrics:
    ReadMe: conventional plots & metrics

    • ECE plots (Ramos et al.)
      metrics: ECE & min ECE
    • APE plots (Brümmer et al.)
      metrics: DCF & min DCF
    • Computation only
      metrics: Cllr, min Cllr & ROCCH-EER

Installation

The installation uses Miniconda, which creates Python environments into a folder structure on your hard drive.

Deinstallation is easy: delete the miniconda folder.

  1. install miniconda, see:
    https://docs.conda.io/projects/conda/en/latest/user-guide/install/#regular-installation
  2. create a Python environment

    conda create python=3.7 --name zebra -y

  3. activate the environment

    conda activate zebra

  4. installing required packages

    conda install -y numpy pandas matplotlib seaborn tabulate

HowTo: use

A quick reference guide for using Python, the command line and to customization.

Command line: metric computation

Computing the metrics (command structure):

python zero_evidence.py -s [SCORE_FILE] -k [KEY_FILE]

An example is provided with scores.txt and key.txt as score and key files:

scr=exp/Baseline/primary/results-2020-05-10-14-29-38/ASV-libri_test_enrolls-libri_test_trials_f/scores
key=keys-voiceprivacy-2020/libri_test_trials_f

python zero_evidence.py -s $scr -k $key

Result:

ZEBRA profile
Population: 0.584 bit
Individual: 3.979 (C)

Command line: visualization

Display each plot: -p option: python zero_evidence.py -s $scr -k $key -p

Command line: customization

  1. Custom label for an experiment: -l option:

    python zero_evidence.py -s $scr -k $key -l "libri speech, primary baseline"
    

    libri speech, primary baseline
    Population: 0.584 bit
    Individual: 3.979 (C)

  2. Save the profile visualization (without their display): -e png

    python zero_evidence.py -s $scr -k $key -l "profile" -e png
    

    -l profile for a file name: ZEBRA-profile
    note: "ZEBRA-" is an automatic prefix to the exported plot file names

    Supported file types:

    • -e tex: LaTeX
    • -e pdf: PDF
    • -e png: PNG
  3. To save a plot with its display, use both options: -p -e png

Python: high-level implementation

Calling the API provided by zebra.py

from zebra import PriorLogOddsPlots, zebra_framework, export_zebra_framework_plots

# initialize the ZEBRA framework 
zebra_plot = PriorLogOddsPlots()  

# declare score & key paths
scr = 'exp/Baseline/primary/results-2020-05-10-14-29-38/ASV-libri_test_enrolls-libri_test_trials_f/scores'
key = 'keys-voiceprivacy-2020/libri_test_trials_f'

# run the framework
zebra_framework(plo_plot=zebra_plot, scr_path=scr, key_path=key)

# saving the ZEBRA plot
export_zebra_framework_plots(plo_plot=zebra_plot, filename='my-experiment', save_plot_ext='png')

Python: low-level implementation

Code snippets from zebra.py

Let's assume classA_scores & classB_scores are numpy arrays of scores.

from numpy import log, abs, hstack, argwhere
from zebra import PriorLogOddsPlots

zebra_plot = PriorLogOddsPlots(classA_scores, classB_scores)

# population metric
dece = zebra_plot.get_delta_ECE()

# individual metric
max_abs_LLR = abs(hstack((plo_plot.classA_llr_laplace, plo_plot.classB_llr_laplace))).max()

# categorical tag
max_abs_LLR_base10 = max_abs_LLR / log(10)
cat_idx = argwhere((cat_ranges < max_abs_LLR_base10).sum(1) == 1).squeeze()
cat_tag = list(categorical_tags.keys())[cat_idx]

# nicely formatted string representations
str_dece = ('%.3f' if dece >= 5e-4 else '%.e') % dece
str_max_abs_llr = ('%.3f' if max_abs_LLR >= 5e-4 else '%.e') % max_abs_LLR

if dece == 0:
    str_dece = '0'

if max_abs_LLR == 0:
    str_max_abs_llr = '0'

For getting the privacy related version on DCF plots, simply run: zebra_plot.get_delta_DCF().

Python: on changing categorical tags

  1. Make a copy of zebra.py
  2. Edit the following part to your liking

    the arrays such as array([0, eps]) contain lower and upper bounds; for numerical convenience only, an epsilon value is used.
    The limits are in base-10 LLR intervals.

    # Here are our categorical tags, inspired by the ENFSI sacle on the stength of evidence
    # Please feel free to try out your own scale as well :)
    # dict: { TAG : [min max] value of base10 LLRs }
    categorical_tags = {
        '0': array([0, eps]),
        'A': array([eps, 1]),
        'B': array([1, 2]),
        'C': array([2, 4]),
        'D': array([4, 5]),
        'E': array([5, 6]),
        'F': array([6, inf])
    }
    
    # pre-computation for easier later use
    cat_ranges = vstack(list(categorical_tags.values()))
    

Documentation

This package is based on:

In performance.py, one can find derived and adjusted code snippets.

For legacy compatability, the code is structured to also provide DCF and ECE visualizations.

Naturally, Cllr, min Cllr and the ROCCH-EER can also be computed with the ZEBRA toolkit. For optimization, please see pyBOSARIS; eventually, to optimize ZEBRA, we would recommend to optimize Cllr. (see Niko Brümmer's disseration or the BOSARIS toolkit user guide regarding convexity).

This toolkit is organized as follows:

  • demo_conventional_plots.py
    Creation of conventional ECE & APE plots
  • demo_voiceprivacy_challenge.py
    Automatic ZEBRA evaluation of an entire challenge
  • demo_zebra.py
    Example on creating a ZEBRA plot and exporting to tex, pdf, png
  • helpers.py
    Helpers to read score files from the kaldi folder structure
  • performance.py
    Library of integrated performance functions, see related software
  • plo_plots.py
    Implementation of ECE & APE plots in one class: PriorLogOddsPlots; with plot export functionality
  • zebra.py
    Wrapper functions to interact with PriorLogOddsPlots in ZEBRA style
  • zero_evidence.py
    Command line script for ZEBRA framework

Acknowledgements

This work is partly funded by the projects: ANR-JST VoicePersonae, ANR Harpocrates and ANR-DFG RESPECT.

Owner
Voice Privacy Challenge
The VoicePrivacy initiative aims to promote the development of privacy preservation tools for speech technology.
Voice Privacy Challenge
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022