Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Overview

Learning-Action-Completeness-from-Points

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV 2021 Oral)

architecture

Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization
Pilhyeon Lee (Yonsei Univ.), Hyeran Byun (Yonsei Univ.)

Paper: https://arxiv.org/abs/2108.05029

Abstract: We tackle the problem of localizing temporal intervals of actions with only a single frame label for each action instance for training. Owing to label sparsity, existing work fails to learn action completeness, resulting in fragmentary action predictions. In this paper, we propose a novel framework, where dense pseudo-labels are generated to provide completeness guidance for the model. Concretely, we first select pseudo background points to supplement point-level action labels. Then, by taking the points as seeds, we search for the optimal sequence that is likely to contain complete action instances while agreeing with the seeds. To learn completeness from the obtained sequence, we introduce two novel losses that contrast action instances with background ones in terms of action score and feature similarity, respectively. Experimental results demonstrate that our completeness guidance indeed helps the model to locate complete action instances, leading to large performance gains especially under high IoU thresholds. Moreover, we demonstrate the superiority of our method over existing state-of-the-art methods on four benchmarks: THUMOS'14, GTEA, BEOID, and ActivityNet. Notably, our method even performs comparably to recent fully-supervised methods, at the 6 times cheaper annotation cost.

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.6
  • Tensorflow 1.15 (for Tensorboard)
  • CUDA 10.2

Depencencies

You can set up the environments by using $ pip3 install -r requirements.txt.

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We excluded three test videos (270, 1292, 1496) as previous work did.
  2. Extract features with two-stream I3D networks

    • We recommend extracting features using this repo.
    • For convenience, we provide the features we used. You can find them here.
  3. Place the features inside the dataset folder.

    • Please ensure the data structure is as below.
├── dataset
   └── THUMOS14
       ├── gt.json
       ├── split_train.txt
       ├── split_test.txt
       ├── fps_dict.json
       ├── point_gaussian
           └── point_labels.csv
       └── features
           ├── train
               ├── rgb
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
               └── flow
                   ├── video_validation_0000051.npy
                   ├── video_validation_0000052.npy
                   └── ...
           └── test
               ├── rgb
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...
               └── flow
                   ├── video_test_0000004.npy
                   ├── video_test_0000006.npy
                   └── ...

Usage

Running

You can easily train and evaluate the model by running the script below.

If you want to try other training options, please refer to options.py.

$ bash run.sh

Evaulation

The pre-trained model can be found here. You can evaluate the model by running the command below.

$ bash run_eval.sh

References

We note that this repo was built upon our previous models.

  • Background Suppression Network for Weakly-supervised Temporal Action Localization (AAAI 2020) [paper] [code]
  • Weakly-supervised Temporal Action Localization by Uncertainty Modeling (AAAI 2021) [paper] [code]

We referenced the repos below for the code.

In addition, we referenced a part of code in the following repo for the greedy algorithm implementation.

Citation

If you find this code useful, please cite our paper.

@inproceedings{lee2021completeness,
  title={Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization},
  author={Pilhyeon Lee and Hyeran Byun},
  booktitle={IEEE/CVF International Conference on Computer Vision},
  year={2021},
}

Contact

If you have any question or comment, please contact the first author of the paper - Pilhyeon Lee ([email protected]).

Owner
Pilhyeon Lee
* Ph.D. student in Yonsei Univ. (2018.03.~present)            
Pilhyeon Lee
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022