The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Overview

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy

https://openreview.net/forum?id=VBZJ_3tz-t

Abstract: Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization (PaI) can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to match the accuracy of a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning.

This code base is created by Shiwei Liu [email protected] during his Ph.D. at Eindhoven University of Technology.

Requirements

Python 3.6, PyTorch v1.5.1, and CUDA v10.2.

How to Run Experiments

[Training module] The training module is controlled by the following arguments:

  • --sparse - Enable sparse mode (remove this if want to train dense model)
  • --fix - Fix the sparse pattern during training (remove this if want to with dynamic sparse training)
  • --sparse-init - Type of sparse initialization. Choose from: uniform, uniform_plus, ERK, ERK_plus, ER, snip (snip ratio), GraSP (GraSP ratio)
  • --model (str) - cifar_resnet_A_B, where A is the depths and B is the width, e.g., cifar_resnet_20_32
  • --density (float) - density level (default 0.05)

CIFAR-10/100 Experiments

To train ResNet with various depths on CIFAR10/100:

for model in cifar_resnet_20 cifar_resnet_32 cifar_resnet_44 cifar_resnet_56 cifar_resnet_110 
do
    python main.py --sparse --seed 17 --sparse_init ERK --fix --lr 0.1 --density 0.05 --model $model --data cifar10 --epoch 160
done

To train ResNet with various depths on CIFAR10/100:

for model in cifar_resnet_20_8 cifar_resnet_20_16 cifar_resnet_20_24 
do
    python main.py --sparse --seed 17 --sparse_init ERK --fix --lr 0.1 --density 0.05 --model $model --data cifar10 --epoch 160
done

ImageNet Experiments

To train WideResNet50_2 on ImageNet with ERK_plus:

cd ImageNet
python $1multiproc.py --nproc_per_node 4 $1main.py --sparse_init ERK_plus --fc_density 1.0 --fix --fp16 --master_port 5556 -j 10 -p 500 --arch WideResNet50_2 -c fanin --label-smoothing 0.1 -b 192 --lr 0.4 --warmup 5 --epochs 100 --density 0.2 --static-loss-scale 256 $2 ../../../../../../data1/datasets/imagenet2012/ --save save/

Citation

if you find this repo is helpful, please cite

@inproceedings{
liu2022the,
title={The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training},
author={Shiwei Liu and Tianlong Chen and Xiaohan Chen and Li Shen and Decebal Constantin Mocanu and Zhangyang Wang and Mykola Pechenizkiy},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=VBZJ_3tz-t}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022