HGCAE Pytorch implementation. CVPR2021 accepted.

Related tags

Deep LearningHGCAE
Overview

Hyperbolic Graph Convolutional Auto-Encoders

Accepted to CVPR2021 🎉

Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Message Passing Auto-Encoders

Jiwoong Park*, Junho Cho*, Hyung Jin Chang, Jin Young Choi (* indicates equal contribution)

vis_cora Embeddings of cora dataset. GAE is Graph Auto-Encoders in Euclidean space, HGCAE is our method. P is Poincare ball, H is Hyperboloid.

Overview

This repository provides HGCAE code in PyTorch for reproducibility with

  • PoincareBall manifold
  • Link prediction task and node clustering task on graph data
    • 6 datasets: Cora, Citeseer, Wiki, Pubmed, Blog Catalog, Amazon Photo
    • Amazon Photo was downloaded via torch-geometric package.
  • Image clustering task on images
    • 2 datasets: ImageNet10, ImageNetDog
    • Image features extracted from ImageNet10, ImageNetDog with PICA image clustering algorithm
    • Mutual K-NN graph from the image features provided.
  • ImageNet-BNCR
    • We have constructed a new dataset, ImageNet-BNCR(Balanced Number of Classes across Roots), via randomly choosing 3 leaf classes per root. We chose three roots, Artifacts, Natural objects, and Animal. Thus, there exist 9 leaf classes, and each leaf class contains 1,300 images in ImageNet-BNCR dataset.
    • bncr

Installation Guide

We use docker to reproduce performance. Please refer guide.md

Usage

1. Run docker

Before training, run our docker image:

docker run --gpus all -it --rm --shm-size 100G -v $PWD:/workspace junhocho/hyperbolicgraphnn:8 bash

If you want to cache edge splits for train/val dataset and load faster afterwards, mkdir ~/tmp and run:

docker run --gpus all -it --rm --shm-size 100G -v $PWD:/workspace -v ~/tmp:/root/tmp junhocho/hyperbolicgraphnn:8 bash

2. train_<dataset>.sh

In the docker session, run each train shell script for each dataset to reproduce performance:

Graph data link prediction

Run following commands to reproduce results:

  • sh script/train_cora_lp.sh
  • sh script/train_citeseer_lp.sh
  • sh script/train_wiki_lp.sh
  • sh script/train_pubmed_lp.sh
  • sh script/train_blogcatalog_lp.sh
  • sh script/train_amazonphoto_lp.sh
ROC AP
Cora 0.94890703 0.94726805
Citeseer 0.96059407 0.96305937
Wiki 0.95510805 0.96200790
Pubmed 0.96207212 0.96083080
Blog Catalog 0.89683939 0.88651569
Amazon Photo 0.98240673 0.97655753

Graph data node clustering

  • sh script/train_cora_nc.sh
  • sh script/train_citeseer_nc.sh
  • sh script/train_wiki_nc.sh
  • sh script/train_pubmed_nc.sh
  • sh script/train_blogcatalog_nc.sh
  • sh script/train_amazonphoto_nc.sh
ACC NMI ARI
Cora 0.74667651 0.57252940 0.55212928
Citeseer 0.69311692 0.42249294 0.44101404
Wiki 0.45945946 0.46777881 0.21517031
Pubmed 0.74849115 0.37759262 0.40770875
Blog Catalog 0.55061586 0.32557388 0.25227964
Amazon Photo 0.78130719 0.69623651 0.60342107

Image clustering

  • sh script/train_ImageNet10.sh
  • sh script/train_ImageNetDog.sh
ACC NMI ARI
ImageNet10 0.85592308 0.79019131 0.74181220
ImageNetDog 0.38738462 0.36059650 0.22696503
  • At least 11GB VRAM is required to run on Pubmed, BlogCatalog, Amazon Photo.
  • We have used GTX 1080ti only in our experiments.
  • Other gpu architectures may not reproduce above performance.

Parameter description

  • dataset : Choose dataset. Refer to each training scripts.
  • c : Curvature of hypebolic space. Should be >0. Preferably choose from 0.1, 0.5 ,1 ,2.
  • c_trainable : 0 or 1. Train c if 1.
  • dropout : Dropout ratio.
  • weight_decay : Weight decay.
  • hidden_dim : Hidden layer dimension. Same dimension used in encoder and decoder.
  • dim : Embedding dimension.
  • lambda_rec : Input reconstruction loss weight.
  • act : relu, elu, tanh.
  • --manifold PoincareBall : Use Euclidean if training euclidean models.
  • --node-cluster 1 : If specified perform node clustering task. If not, link prediction task.

Acknowledgments

This repo is inspired by hgcn.

And some of the code was forked from the following repositories:

License

This work is licensed under the MIT License

Citation

@inproceedings{park2021unsupervised,
  title={Unsupervised Hyperbolic Representation Learning via Message Passing Auto-Encoders},
  author={Jiwoong Park and Junho Cho and Hyung Jin Chang and Jin Young Choi},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}

Owner
Junho Cho
Integrated Ph.D candidate of Seoul National University (Perception and Intelligence Laboratory)
Junho Cho
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023