Unofficial JAX implementations of Deep Learning models

Overview

JAX Models

license-shield release-shield python-shield code-style

Table of Contents
  1. About The Project
  2. Getting Started
  3. Contributing
  4. License
  5. Contact

About The Project

The JAX Models repository aims to provide open sourced JAX/Flax implementations for research papers originally without code or code written with frameworks other than JAX. The goal of this project is to make a collection of models, layers, activations and other utilities that are most commonly used for research. All papers and derived or translated code is cited in either the README or the docstrings. If you think that any citation is missed then please raise an issue.

All implementations provided here are available on Papers With Code.


Available model implementations for JAX are:
  1. MetaFormer is Actually What You Need for Vision (Weihao Yu et al., 2021)
  2. Augmenting Convolutional networks with attention-based aggregation (Hugo Touvron et al., 2021)
  3. MPViT : Multi-Path Vision Transformer for Dense Prediction (Youngwan Lee et al., 2021)
  4. MLP-Mixer: An all-MLP Architecture for Vision (Ilya Tolstikhin et al., 2021)
  5. Patches Are All You Need (Anonymous et al., 2021)
  6. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers (Enze Xie et al., 2021)
  7. A ConvNet for the 2020s (Zhuang Liu et al., 2021)
  8. Masked Autoencoders Are Scalable Vision Learners (Kaiming He et al., 2021)

Available layers for out-of-the-box integration:
  1. DropPath (Stochastic Depth) (Gao Huang et al., 2021)
  2. Squeeze-and-Excitation Layer (Jie Hu et al. 2019)
  3. Depthwise Convolution (François Chollet, 2017)

Prerequisites

Prerequisites can be installed separately through the requirements.txt file in the main directory using:

pip install -r requirements.txt

The use of a virtual environment is highly recommended to avoid version incompatibilites.

Installation

This project is built with Python 3 for the latest JAX/Flax versions and can be directly installed via pip.

pip install jax-models

If you wish to use the latest version then you can directly clone the repository too.

git clone https://github.com/DarshanDeshpande/jax-models.git

Usage

To see all model architectures available:

from jax_models.models.model_registry import list_models
from pprint import pprint

pprint(list_models())

To load your desired model:

from jax_models.models.model_registry import load_model
load_model('mpvit-base', attach_head=True, num_classes=1000, dropout=0.1)

Contributing

Please raise an issue if any implementation gives incorrect results, crashes unexpectedly during training/inference or if any citation is missing.

You can contribute to jax_models by supporting me with compute resources or by contributing your own resources to provide pretrained weights.

If you wish to donate to this inititative then please drop me a mail here.

License

Distributed under the Apache 2.0 License. See LICENSE for more information.

Contact

Feel free to reach out for any issues or requests related to these implementations

Darshan Deshpande - Email | Twitter | LinkedIn

You might also like...
Very deep VAEs in JAX/Flax
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

PyTorch implementations of neural network models for keyword spotting
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

JAX code for the paper
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Comments
  • Missing Axis Swap in ExtractPatches and MergePatches

    Missing Axis Swap in ExtractPatches and MergePatches

    In patch_utils.py, the modules ExtractPatches and MergePatches are missing an axis swap between the reshapes, resulting in the extracted patches becoming horizontal stripes. For example, if we follow the code in ExtractPatches:

    >>> inputs = jnp.arange(16).reshape(1, 4, 4, 1)
    >>> inputs[0, :, :, 0]
    
    DeviceArray([[ 0,  1,  2,  3],
                 [ 4,  5,  6,  7],
                 [ 8,  9, 10, 11],
                 [12, 13, 14, 15]], dtype=int32)
    
    >>> patch_size = 2
    >>> batch, height, width, channels = inputs.shape
    >>> height, width = height // patch_size, width // patch_size
    >>> x = jnp.reshape(inputs, (batch, height, patch_size, width, patch_size, channels))
    >>> x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    >>> x[0, 0, :]
    
    DeviceArray([0, 1, 2, 3], dtype=int32)
    

    We see that the first patch extracted is not the patch containing [0, 1, 4, 5], but the horizontal stripe [0, 1, 2, 3]. To fix this problem, we should add an axis swap. For ExtractPatches, this should be:

    batch, height, width, channels = inputs.shape
    height, width = height // patch_size, width // patch_size
    x = jnp.reshape(
        inputs, (batch, height, patch_size, width, patch_size, channels)
    )
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * width, patch_size ** 2 * channels))
    

    For MergePatches, this should be:

    batch, length, _ = inputs.shape
    height = width = int(length**0.5)
    x = jnp.reshape(inputs, (batch, height, width, patch_size, patch_size, -1))
    x = jnp.swapaxes(x, 2, 3)
    x = jnp.reshape(x, (batch, height * patch_size, width * patch_size, -1))
    
    bug 
    opened by young-geng 4
  • fix convnext to make it work with jax.jit

    fix convnext to make it work with jax.jit

    Hey, first of all, thanks for the nice codebase. When doing inference using the convnext model, I noticed the following issue:

    Calling x.item() will call float(x), which breaks the jit tracer. We can remove the list comprehension in unnecessary conversion to make jax.jit work. Without jax.jit, the model is very slow for me, running with only ~30% GPU utilization (RTX 3090).

    This issue could apply to other models as well, maybe it is a good idea to include a test for applying jax.jit to each model?

    opened by maxidl 1
Releases(v0.5-van)
Owner
Helping Machines Learn Better 💻😃
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022