Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Overview

Saliency Methods

🔴    Now framework-agnostic! (Example core notebook)   🔴

🔗    For further explanation of the methods and more examples of the resulting maps, see our Github Pages website   🔗

If upgrading from an older version, update old imports to import saliency.tf1 as saliency. We provide wrappers to make the framework-agnostic version compatible with TF1 models. (Example TF1 notebook)

Introduction

This repository contains code for the following saliency techniques:

*Developed by PAIR.

This list is by no means comprehensive. We are accepting pull requests to add new methods!

Download

# To install the core subpackage:
pip install saliency

# To install core and tf1 subpackages:
pip install saliency[tf1]

or for the development version:

git clone https://github.com/pair-code/saliency
cd saliency

Usage

The saliency library has two subpackages:

  • core uses a generic call_model_function which can be used with any ML framework.
  • tf1 accepts input/output tensors directly, and sets up the necessary graph operations for each method.

Core

Each saliency mask class extends from the CoreSaliency base class. This class contains the following methods:

  • GetMask(x_value, call_model_function, call_model_args=None): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, call_model_function, call_model_args=None, stdev_spread=.15, nsamples=25, magnitude=True): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two methods for saliency visualization:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

call_model_function

call_model_function is how we pass inputs to a given model and receive the outputs necessary to compute saliency masks. The description of this method and expected output format is in the CoreSaliency description, as well as separately for each method.

Examples

This example iPython notebook showing these techniques is a good starting place.

Here is a condensed example of using IG+SmoothGrad with TensorFlow 2:

import saliency.core as saliency
import tensorflow as tf

...

# call_model_function construction here.
def call_model_function(x_value_batched, call_model_args, expected_keys):
	tape = tf.GradientTape()
	grads = np.array(tape.gradient(output_layer, images))
	return {saliency.INPUT_OUTPUT_GRADIENTS: grads}

...

# Load data.
image = GetImagePNG(...)

# Compute IG+SmoothGrad.
ig_saliency = saliency.IntegratedGradients()
smoothgrad_ig = ig_saliency.GetSmoothedMask(image, 
											call_model_function, 
                                            call_model_args=None)

# Compute a 2D tensor for visualization.
grayscale_visualization = saliency.VisualizeImageGrayscale(
    smoothgrad_ig)

TF1

Each saliency mask class extends from the TF1Saliency base class. This class contains the following methods:

  • __init__(graph, session, y, x): Constructor of the SaliencyMask. This can modify the graph, or sometimes create a new graph. Often this will add nodes to the graph, so this shouldn't be called continuously. y is the output tensor to compute saliency masks with respect to, x is the input tensor with the outer most dimension being batch size.
  • GetMask(x_value, feed_dict): Returns a mask of the shape of non-batched x_value given by the saliency technique.
  • GetSmoothedMask(x_value, feed_dict): Returns a mask smoothed of the shape of non-batched x_value with the SmoothGrad technique.

The visualization module contains two visualization methods:

  • VisualizeImageGrayscale(image_3d, percentile): Marginalizes across the absolute value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between 0 to 1.
  • VisualizeImageDiverging(image_3d, percentile): Marginalizes across the value of each channel to create a 2D single channel image, and clips the image at the given percentile of the distribution. This method returns a 2D tensor normalized between -1 to 1 where zero remains unchanged.

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use.

Examples

This example iPython notebook shows these techniques is a good starting place.

Another example of using GuidedBackprop with SmoothGrad from TensorFlow:

from saliency.tf1 import GuidedBackprop
from saliency.tf1 import VisualizeImageGrayscale
import tensorflow.compat.v1 as tf

...
# Tensorflow graph construction here.
y = logits[5]
x = tf.placeholder(...)
...

# Compute guided backprop.
# NOTE: This creates another graph that gets cached, try to avoid creating many
# of these.
guided_backprop_saliency = GuidedBackprop(graph, session, y, x)

...
# Load data.
image = GetImagePNG(...)
...

smoothgrad_guided_backprop =
    guided_backprop_saliency.GetMask(image, feed_dict={...})

# Compute a 2D tensor for visualization.
grayscale_visualization = visualization.VisualizeImageGrayscale(
    smoothgrad_guided_backprop)

Conclusion/Disclaimer

If you have any questions or suggestions for improvements to this library, please contact the owners of the PAIR-code/saliency repository.

This is not an official Google product.

Owner
PAIR code
Code repositories for projects from the People+AI Research (PAIR) Initiative
PAIR code
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023