Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Related tags

Deep LearningBtcDet
Overview

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Acknowledgement

We implement our model, BtcDet, based on [OpenPcdet 0.3.0].

Installation

Requirements

All the codes are tested in the following environment:

Install

b. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 
  • Install the SparseConv library, we use the implementation from [spconv].
    • If you use PyTorch 1.1, then make sure you install the spconv v1.0 with (commit 8da6f96) instead of the latest one.
    • If you use PyTorch 1.3+, then you need to install the spconv v1.2. As mentioned by the author of spconv
    git clone -b v1.2.1  https://github.com/traveller59/spconv.git --recursive
    
    cd spconv
    
    sudo apt-get install libboost-all-dev
    
    python setup.py bdist_wheel
    
    cd ./dist 
    
    then use pip to install generated whl file.
    pip install spconv-1.2.1-{your system info}.whl
    
    After that, you should first get out of the spconv directory, then do python import spconv to see if you installed it correctly.

c. Install this btcdet library by running the following command:

cd btcdet
python setup.py develop

Preparation

KITTI Dataset

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
BtcDet
├── data
│   ├── kitti
    │   │   │──detection3d  │── ImageSets
                    │   │   │── training
                    │   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
                    │   │   │── testing
                    │   │   │   ├──calib & velodyne & image_2
  • Generate the data infos by running the following command:
python -m btcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

Generate Approximated complete object points:

(at btcdet directory, execute:)

python -m btcdet.datasets.multifindbestfit

Alternatively,

you can use our generated kitti's data including the generated complete object points, download it [here (about 31GBs)] and put the zip file inside data/kitti/ and unzip it as detection3d directory.

Run training:

cd tools/

Single gpu training

mkdir output

mkdir output/kitti_car

python train.py --cfg_file ./cfgs/model_configs/btcdet_kitti_car.yaml --output_dir ../output/kitti_car/ --batch_size 2

Multi gpu training

bash scripts/dist_train.sh 4  --batch_size 8 --gpu_str "0,1,2,3" --cfg_file ./cfgs/model_configs/btcdet_kitti_car.yaml --output_dir ../output/kitti_car/
Owner
Qiangeng Xu
Qiangeng Xu
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022