A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

Overview

CLEVR Dataset Generation

This is the code used to generate the CLEVR dataset as described in the paper:

CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
Presented at CVPR 2017

Code and pretrained models for the baselines used in the paper can be found here.

You can use this code to render synthetic images and compositional questions for those images, like this:

Q: How many small spheres are there?
A: 2

Q: What number of cubes are small things or red metal objects?
A: 2

Q: Does the metal sphere have the same color as the metal cylinder?
A: Yes

Q: Are there more small cylinders than metal things?
A: No

Q: There is a cylinder that is on the right side of the large yellow object behind the blue ball; is there a shiny cube in front of it?
A: Yes

If you find this code useful in your research then please cite

@inproceedings{johnson2017clevr,
  title={CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning},
  author={Johnson, Justin and Hariharan, Bharath and van der Maaten, Laurens
          and Fei-Fei, Li and Zitnick, C Lawrence and Girshick, Ross},
  booktitle={CVPR},
  year={2017}
}

All code was developed and tested on OSX and Ubuntu 16.04.

Step 1: Generating Images

First we render synthetic images using Blender, outputting both rendered images as well as a JSON file containing ground-truth scene information for each image.

Blender ships with its own installation of Python which is used to execute scripts that interact with Blender; you'll need to add the image_generation directory to Python path of Blender's bundled Python. The easiest way to do this is by adding a .pth file to the site-packages directory of Blender's Python, like this:

echo $PWD/image_generation >> $BLENDER/$VERSION/python/lib/python3.5/site-packages/clevr.pth

where $BLENDER is the directory where Blender is installed and $VERSION is your Blender version; for example on OSX you might run:

echo $PWD/image_generation >> /Applications/blender/blender.app/Contents/Resources/2.78/python/lib/python3.5/site-packages/clevr.pth

You can then render some images like this:

cd image_generation
blender --background --python render_images.py -- --num_images 10

On OSX the blender binary is located inside the blender.app directory; for convenience you may want to add the following alias to your ~/.bash_profile file:

alias blender='/Applications/blender/blender.app/Contents/MacOS/blender'

If you have an NVIDIA GPU with CUDA installed then you can use the GPU to accelerate rendering like this:

blender --background --python render_images.py -- --num_images 10 --use_gpu 1

After this command terminates you should have ten freshly rendered images stored in output/images like these:


The file output/CLEVR_scenes.json will contain ground-truth scene information for all newly rendered images.

You can find more details about image rendering here.

Step 2: Generating Questions

Next we generate questions, functional programs, and answers for the rendered images generated in the previous step. This step takes as input the single JSON file containing all ground-truth scene information, and outputs a JSON file containing questions, answers, and functional programs for the questions in a single JSON file.

You can generate questions like this:

cd question_generation
python generate_questions.py

The file output/CLEVR_questions.json will then contain questions for the generated images.

You can find more details about question generation here.

Owner
Facebook Research
Facebook Research
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023