Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Overview

Clinically Significant Prostate Cancer Detection in bpMRI

Note: This repo will be continually updated upon future advancements and we welcome open-source contributions! Currently, it shares the TensorFlow 2.5 version of the Hierarchical Probabilistic 3D U-Net (with attention mechanisms, nested decoder structure and deep supervision), titled M1, as explored in the publication(s) listed below. Source code used for training this model, as per our original setup, carry a large number of dependencies on internal datasets, tooling, infrastructure and hardware, and their release is currently not feasible. However, an equivalent minimal adaptation has been made available. We encourage users to test out M1, identify potential areas for significant improvement and propose PRs for inclusion to this repo.

Pre-Trained Model using 1950 bpMRI with PI-RADS v2 Annotations [Training:Validation Ratio - 80:20]:
To infer lesion predictions on testing samples using the pre-trained variant (architecture in commit 58b784f) of this algorithm, please visit https://grand-challenge.org/algorithms/prostate-mri-cad-cspca/

Main Scripts
โ— Preprocessing Functions: tf2.5/scripts/preprocess.py
โ— Tensor-Based Augmentations: tf2.5/scripts/model/augmentations.py
โ— Training Script Template: tf2.5/scripts/train_model.py
โ— Basic Callbacks (e.g. LR Schedules): tf2.5/scripts/callbacks.py
โ— Loss Functions: tf2.5/scripts/model/losses.py
โ— Network Architecture: tf2.5/scripts/model/unets/networks.py

Requirements
โ— Complete Docker Container: anindox8/m1:latest
โ— Key Python Packages: tf2.5/requirements.txt

schematic Train-time schematic for the Bayesian/hierarchical probabilistic configuration of M1. L_S denotes the segmentation loss between prediction p and ground-truth Y. Additionally, L_KL, denoting the Kullbackโ€“Leibler divergence loss between prior distribution P and posterior distribution Q, is used at train-time (refer to arXiv:1905.13077). For each execution of the model, latent samples z_i โˆˆ Q (train-time) or z_i โˆˆ P (test-time) are successively drawn at increasing scales of the model to predict one segmentation mask p.

schematic Architecture schematic of M1, with attention mechanisms and a nested decoder structure with deep supervision.

Minimal Example of Model Setup in TensorFlow 2.5:
(More Details: Training CNNs in TF2: Walkthrough; TF2 Datasets: Best Practices; TensorFlow Probability)

# U-Net Definition (Note: Hyperparameters are Data-Centric -> Require Adequate Tuning for Optimal Performance)
unet_model = unets.networks.M1(\
                        input_spatial_dims =  (20,160,160),            
                        input_channels     =   3,
                        num_classes        =   2,                       
                        filters            =  (32,64,128,256,512),   
                        strides            = ((1,1,1),(1,2,2),(1,2,2),(2,2,2),(2,2,2)),  
                        kernel_sizes       = ((1,3,3),(1,3,3),(3,3,3),(3,3,3),(3,3,3)),
                        prob_latent_dims   =  (3,2,1,0)
                        dropout_rate       =   0.50,       
                        dropout_mode       =  'monte-carlo',
                        se_reduction       =  (8,8,8,8,8),
                        att_sub_samp       = ((1,1,1),(1,1,1),(1,1,1),(1,1,1)),
                        kernel_initializer =   tf.keras.initializers.Orthogonal(gain=1), 
                        bias_initializer   =   tf.keras.initializers.TruncatedNormal(mean=0, stddev=1e-3),
                        kernel_regularizer =   tf.keras.regularizers.l2(1e-4),
                        bias_regularizer   =   tf.keras.regularizers.l2(1e-4),     
                        cascaded           =   False,
                        probabilistic      =   True,
                        deep_supervision   =   True,
                        summary            =   True)  

# Schedule Cosine Annealing Learning Rate with Warm Restarts
LR_SCHEDULE = (tf.keras.optimizers.schedules.CosineDecayRestarts(\
                        initial_learning_rate=1e-3, t_mul=2.00, m_mul=1.00, alpha=1e-3,
                        first_decay_steps=int(np.ceil(((TRAIN_SAMPLES)/BATCH_SIZE)))*10))
                                                  
# Compile Model w/ Optimizer and Loss Function(s)
unet_model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=LR_SCHEDULE, amsgrad=True), 
                   loss      = losses.Focal(alpha=[0.75, 0.25], gamma=2.00).loss)

# Train Model
unet_model.fit(...)

If you use this repo or some part of its codebase, please cite the following articles (see bibtex):

โ— A. Saha, J. Bosma, J. Linmans, M. Hosseinzadeh, H. Huisman (2021), "Anatomical and Diagnostic Bayesian Segmentation in Prostate MRI โˆ’Should Different Clinical Objectives Mandate Different Loss Functions?", Medical Imaging Meets NeurIPS Workshop โ€“ 35th Conference on Neural Information Processing Systems (NeurIPS), Sydney, Australia. (architecture in commit 914ec9d)

โ— A. Saha, M. Hosseinzadeh, H. Huisman (2021), "End-to-End Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction", Medical Image Analysis:102155. (architecture in commit 58b784f)

โ— A. Saha, M. Hosseinzadeh, H. Huisman (2020), "Encoding Clinical Priori in 3D Convolutional Neural Networks for Prostate Cancer Detection in bpMRI", Medical Imaging Meets NeurIPS Workshop โ€“ 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada. (architecture in commit 58b784f)

Contact: [email protected]; [email protected]

Related U-Net Architectures:
โ— nnU-Net: https://github.com/MIC-DKFZ/nnUNet
โ— Attention U-Net: https://github.com/ozan-oktay/Attention-Gated-Networks
โ— UNet++: https://github.com/MrGiovanni/UNetPlusPlus
โ— Hierarchical Probabilistic U-Net: https://github.com/deepmind/deepmind-research/tree/master/hierarchical_probabilistic_unet

Owner
Diagnostic Image Analysis Group
Diagnostic Image Analysis Group
NanoDet-PlusโšกSuper fast and lightweight anchor-free object detection model. ๐Ÿ”ฅOnly 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone๐Ÿ”ฅ

NanoDet-PlusโšกSuper fast and lightweight anchor-free object detection model. ๐Ÿ”ฅOnly 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone๐Ÿ”ฅ

4.8k Jan 07, 2023
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
๐Ÿ‘จโ€๐Ÿ’ป run nanosaur in simulation with Gazebo/Ingnition

๐Ÿฆ• ๐Ÿ‘จโ€๐Ÿ’ป nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusรฃo. Requisitos ter o python 3.9.8 instalado em sua mรกquina. ter a git instalada

josh washington 2 Dec 27, 2021
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022