A Fast Knowledge Distillation Framework for Visual Recognition

Overview

FKD: A Fast Knowledge Distillation Framework for Visual Recognition

Official PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition. Zhiqiang Shen and Eric Xing from CMU and MUZUAI.

Abstract

Knowledge Distillation (KD) has been recognized as a useful tool in many visual tasks, such as the supervised classification and self-supervised representation learning, while the main drawback of a vanilla KD framework lies in its mechanism that most of the computational overhead is consumed on forwarding through the giant teacher networks, which makes the whole learning procedure in a low-efficient and costly manner. In this work, we propose a Fast Knowledge Distillation (FKD) framework that simulates the distillation training phase and generates soft labels following the multi-crop KD procedure, meanwhile enjoying the faster training speed than ReLabel as we have no post-processes like RoI align and softmax operations. Our FKD is even more efficient than the conventional classification framework when employing multi-crop in the same image for data loading. We achieve 79.8% using ResNet-50 on ImageNet-1K, outperforming ReLabel by ~1.0% while being faster. We also demonstrate the efficiency advantage of FKD on the self-supervised learning task.

Supervised Training

Preparation

FKD Training on CNNs

To train a model, run train_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

python train_FKD.py -a resnet50 --lr 0.1 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For --softlabel_path, simply use format as ./FKD_soft_label_500_crops_marginal_smoothing_k_5

Multi-processing distributed training is supported, please refer to official PyTorch ImageNet training code for details.

Evaluation

python train_FKD.py -a resnet50 -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model accuracy (Top-1) weights configurations
ReLabel ResNet-50 78.9 -- --
FKD ResNet-50 79.8 link Table 10 in paper
ReLabel ResNet-101 80.7 -- --
FKD ResNet-101 81.7 link Table 10 in paper

FKD Training on ViT/DeiT and SReT

To train a ViT model, run train_ViT_FKD.py with the desired model architecture and the path to the soft label and ImageNet dataset:

cd train_ViT
python train_ViT_FKD.py -a SReT_LT --lr 0.002 --wd 0.05 --num_crops 4 -b 1024 --cos --softlabel_path [soft label path] [imagenet-folder with train and val folders]

For the instructions of SReT_LT model, please refer to SReT for details.

Evaluation

python train_ViT_FKD.py -a SReT_LT -e --resume [model path] [imagenet-folder with train and val folders]

Trained Models

Model FLOPs #params accuracy (Top-1) weights configurations
DeiT-T-distill 1.3B 5.7M 74.5 -- --
FKD ViT/DeiT-T 1.3B 5.7M 75.2 link Table 11 in paper
SReT-LT-distill 1.2B 5.0M 77.7 -- --
FKD SReT-LT 1.2B 5.0M 78.7 link Table 11 in paper

Fast MEAL V2

Please see MEAL V2 for the instructions to run FKD with MEAL V2.

Self-supervised Representation Learning Using FKD

Please see FKD-SSL for the instructions to run FKD code for SSL task.

Citation

@article{shen2021afast,
      title={A Fast Knowledge Distillation Framework for Visual Recognition}, 
      author={Zhiqiang Shen and Eric Xing},
      year={2021},
      journal={arXiv preprint arXiv:2112.01528}
}

Contact

Zhiqiang Shen (zhiqians at andrew.cmu.edu or zhiqiangshen0214 at gmail.com)

Owner
Zhiqiang Shen
Zhiqiang Shen
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022