MOT-Tracking-by-Detection-Pipeline - For Tracking-by-Detection format MOT (Multi Object Tracking), is it a framework that separates Detection and Tracking processes?

Overview

MOT-Tracking-by-Detection-Pipeline

Tracking-by-Detection形式のMOT(Multi Object Tracking)について、
DetectionとTrackingの処理を分離して寄せ集めたフレームワークです。



09.MOT.mp4

Usage

デモの実行方法は以下です。

python main.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --movie
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --detector
    Object Detectionのモデル選択
    yolox, efficientdet, ssd, centernet, nanodet, mediapipe_face, mediapipe_hand の何れかを指定
    デフォルト:yolox
  • --tracker
    トラッキングアルゴリズムの選択
    motpy, bytetrack, norfair の何れかを指定
    デフォルト:bytetrack

Direcotry

│  main.py
│  test.mp4
├─Detector
│  │  detector.py
│  └─xxxxxxxx
│      │  xxxxxxxx.py
│      │  config.json
│      │  LICENSE
│      └─model
│          xxxxxxxx.onnx
└─Tracker
    │  tracker.py
    └─yyyyyyyy
        │  yyyyyyyy.py
        │  config.json
        │  LICENSE
        └─tracker

各モデル、トラッキングアルゴリズムを格納しているディレクトリには、
ライセンス条項とコンフィグを同梱しています。

Detector

モデル名 取得元リポジトリ ライセンス 備考
YOLOX Megvii-BaseDetection/YOLOX Apache-2.0 YOLOX-ONNX-TFLite-Sampleにて
ONNX化したモデルを使用
EfficientDet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
SSD MobileNet v2 FPNLite tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
CenterNet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
NanoDet RangiLyu/nanodet Apache-2.0 NanoDet-ONNX-Sampleにて
ONNX化したモデルを使用
MediaPipe Face Detection google/mediapipe Apache-2.0 目、鼻、口、耳のキーポイントは未使用
MediaPipe Hands google/mediapipe Apache-2.0 ランドマークから外接矩形を算出し使用

Tracker

アルゴリズム名 取得元リポジトリ ライセンス 備考
motpy wmuron/motpy MIT マルチクラス対応
ByteTrack ifzhang/ByteTrack MIT -
Norfair tryolabs/norfair MIT -

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

MOT-Tracking-by-Detection-Pipeline is under MIT License.

※MOT-Tracking-by-Detection-Pipelineのソースコード自体はMIT Licenseでの提供ですが、
各アルゴリズムのソースコードは、それぞれのライセンスに従います。
詳細は各ディレクトリ同梱のLICENSEファイルをご確認ください。

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーイタリア ミラノの横断歩道を使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022