Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Overview

Learning Causal Semantic Representation for Out-of-Distribution Prediction

This repository is the official implementation of "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS 2021).

Chang Liu <[email protected]>, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, Tie-Yan Liu.
[Paper & Appendix] [Slides] [Video] [Poster]

Introduction

graphical summary

The work proposes a Causal Semantic Generative model (CSG) for OOD generalization (single-source domain generalization) and domain adaptation. The model is developed following a causal reasoning process, and prediction is made by leveraging the causal invariance principle. Training and prediction algorithms are developed based on variational Bayes with a novel design. Theoretical guarantees on the identifiability of the causal factor and the benefits for OOD prediction are presented.

This codebase implements the CSG methods, and implements or integrates various baselines. Most domain adaptation baselines (except BNM) use the dalib package. The experiment setups on the PACS and VLCS datasets are adopted from the domainbed repository. Authorships are clarified in each file or module.

Requirements

The code requires python version >= 3.6, and is based on PyTorch. To install requirements:

pip install -r requirements.txt

Usage

Folder a-mnist contains scripts to run the experiments on the Shifted-MNIST dataset, and a-imageclef on the ImageCLEF-DA dataset, and a-domainbed on the PACS and VLCS datasets (the prefix a- represents "application").

Go to the respective folder and run the prepare_data.sh or makedata.sh script there to prepare the datasets. Run the run_ood.sh (for OOD generalization methods) and run_da.sh (for domain adaptation methods) scripts to train the models. Evaluation result (accuracy on the test domain) is printed and written to disk with the model and configurations. See the commands in the script files or python3 main.py --help for customized usage or hyperparameter tuning.

Owner
Chang Liu
Researcher @ MSR Asia. Ph.D. from Tsinghua University. Statistical Machine Learning, Bayesian Inference, Geometric Machine Learning.
Chang Liu
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent PeƱafiel

Gregory 1 Jan 18, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022