DANet for Tabular data classification/ regression.

Related tags

Deep LearningDANet
Overview

Deep Abstract Networks

A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression.

Downloads

Dataset

Download the datasets from the following links:

(Optional) Before starting the program, you may change the file format to .pkl by using svm2pkl() or csv2pkl() in ./data/data_util.py

Weights for inference models

The demo weights for Forest Cover Type dataset is available in the folder "./Weights/".

How to use

Setting

  1. Clone or download this repository, and cd the path where you clone it.
  2. Build a working python environment. Python 3.7 is fine for this repository.
  3. Install packages in requirements.txt, e.g., by pip install -r requirements.txt.
  4. The default hyperparameters are in ./config/default.py.

Training

  1. Set the hyperparameters in config file (./config/default.py or ./config/*.yaml).
    Notably, the hyperparameters in .yaml file will cover those in default.py.

  2. Run python main.py --c [config_path] --g [gpu_id].

    • -c: The config file path
    • -g: GPU device ID
  3. The checkpoint models and best models will be saved at ./logs.

Inference

  1. Replace the resume_dir path by the file path of model/weight.
  2. Run codes by using python predict.py -d [dataset_name] -m [model_file_path] -g [gpu_id].
    • -d: Dataset name
    • -m: Model path for loading
    • -g: GPU device ID

Config Hyperparameters

Normal parameters

  • dataset: str
    Dataset name must match those in ./data/dataset.py.

  • task: str
    Using 'classification' or 'regression'.

  • resume_dir: str
    The log path containing the checkpoint models.

  • logname: str
    The directory names of the models save at ./logs.

  • seed: int
    Random seed.

Model parameters

  • layer: int (default=20)
    Number of abstract layers to stack

  • k: int (default=5)
    Number of masks

  • base_outdim: int (default=64)
    The output feature dimension in abstract layer.

  • drop_rate: float (default=0.1) Dropout rate in shortcut module

Fit parameters

  • lr: float (default=0.008)
    Learning rate

  • max_epochs: int (default=5000)
    Maximum number of epochs for training.

  • patience: int (default=1500)
    Number of consecutive epochs without improvement before performing early stopping. If patience is set to 0, then no early stopping will be performed.

  • batch_size: int (default=8192)
    Number of examples per batch.

  • virtual_batch_size: int (default=256)
    Size of the mini batches used for "Ghost Batch Normalization". virtual_batch_size must divide batch_size

Owner
Ronnie Rocket
Ronnie Rocket
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022