Self-supervised Deep LiDAR Odometry for Robotic Applications

Overview

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications

Overview

This is the corresponding code to the above paper ("Self-supervised Learning of LiDAR Odometry for Robotic Applications") which is published at the International Conference on Robotics and Automation (ICRA) 2021. The code is provided by the Robotics Systems Lab at ETH Zurich, Switzerland.

** Authors:** Julian Nubert ([email protected]) , Shehryar Khattak , Marco Hutter

title_img

Copyright IEEE

Python Setup

We provide a conda environment for running our code.

Conda

The conda environment is very comfortable to use in combination with PyTorch because only NVidia drivers are needed. The Installation of suitable CUDA and CUDNN libraries is all handle by Conda.

  • Install conda: link
  • To set up the conda environment run the following command:
conda env create -f conda/DeLORA-py3.9.yml

This installs an environment including GPU-enabled PyTorch, including any needed CUDA and cuDNN dependencies.

  • Activate the environment:
conda activate DeLORA-py3.9
  • Install the package to set all paths correctly:
pip3 install -e .

ROS Setup

For running ROS code in the ./src/ros_utils/ folder you need to have ROS installed (link). We recommend Ubuntu 20.04 and ROS Noetic due to its native Python3 support. For performing inference in Python2.7, convert your PyTorch model with ./scripts/convert_pytorch_models.py and run an older PyTorch version (<1.3).

ros-numpy

In any case you need to install ros-numpy if you want to make use of the provided rosnode:

sudo apt install ros-<distro>-ros-numpy

Datasets and Preprocessing

Instructions on how to use and preprocess the datasets can be found in the ./datasets/ folder. We provide scripts for doing the preprocessing for:

  1. general rosbags containing LiDAR scans,
  2. and for the KITTI dataset in its own format.

Example: KITTI Dataset

LiDAR Scans

Download the "velodyne laster data" from the official KITTI odometry evaluation ( 80GB): link. Put it to <delora_ws>/datasets/kitti, where kitti contains /data_odometry_velodyne/dataset/sequences/00..21.

Groundtruth poses

Please also download the groundtruth poses here. Make sure that the files are located at <delora_ws>/datasets/kitti, where kitti contains /data_odometry_poses/dataset/poses/00..10.txt.

Preprocessing

In the file ./config/deployment_options.yaml make sure to set datasets: ["kitti"]. Then run

preprocess_data.py

Custom Dataset

If you want to add an own dataset please add its sensor specifications to ./config/config_datasets.yaml and ./config/config_datasets_preprocessing.yaml. Information that needs to be added is the dataset name, its sequences and its sensor specifications such as vertical field of view and number of rings.

Deploy

After preprocessing, for each dataset we assume the following hierarchical structure: dataset_name/sequence/scan (see previous dataset example). Our code natively supports training and/or testing on various datasets with various sequences at the same time.

Training

Run the training with the following command:

run_training.py

The training will be executed for the dataset(s) specified in ./config/deployment_options.yaml. You will be prompted to enter a name for this training run, which will be used for reference in the MLFlow logging.

Custom Settings

For custom settings and hyper-parameters please have a look in ./config/.

By default loading from RAM is disabled. If you have enough memory, enable it in ./config/deployment_options.yaml. When loading from disk, the first few iterations are sometimes slow due to I/O, but it should accelerate quite quickly. For storing the KITTI training set entirely in memory, roughly 50GB of RAM are required.

Continuing Training

For continuing training provide the --checkpoint flag with a path to the model checkpoint to the script above.

Visualizing progress and results

For visualizing progress we use MLFlow. It allows for simple logging of parameters, metrics, images, and artifacts. Artifacts could e.g. also be whole TensorBoard logfiles. To visualize the training progress execute (from DeLORA folder):

mlflow ui 

The MLFlow can then be visualized in your browser following the link in the terminal.

Testing

Testing can be run along the line:

run_testing.py --checkpoint <path_to_checkpoint>

The checkpoint can be found in MLFlow after training. It runs testing for the dataset specified in ./config/deployment_options.yaml.

We provide an exemplary trained model in ./checkpoints/kitti_example.pth.

ROS-Node

This ROS-node takes the pretrained model at location <model_location> and performs inference; i.e. it predicts and publishes the relative transformation between incoming point cloud scans. The variable <dataset> should contain the name of the dataset in the config files, e.g. kitti, in order to load the corresponding parameters. Topic and frame names can be specified in the following way:

run_rosnode.py --checkpoint <model_location> --dataset <dataset> --lidar_topic=<name_of_lidar_topic> --lidar_frame=<name_of_lidar_frame>

The resulting odometry will be published as a nav_msgs.msg.Odometry message under the topic /delora/odometry .

Example: DARPA Dataset

For the darpa dataset this could look as follows:

run_rosnode.py --checkpoint ~/Downloads/checkpoint_epoch_0.pth --dataset darpa --lidar_topic "/sherman/lidar_points" --lidar_frame sherman/ouster_link

Comfort Functions

Additional functionalities are provided in ./bin/ and ./scripts/.

Visualization of Normals (mainly for debugging)

Located in ./bin/, see the readme-file ./dataset/README.md for more information.

Creation of Rosbags for KITTI Dataset

After starting a roscore, conversion from KITTI dataset format to a rosbag can be done using the following command:

python scripts/convert_kitti_to_rosbag.py

The point cloud scans will be contained in the topic "/velodyne_points", located in the frame velodyne. E.g. for the created rosbag, our provided rosnode can be run using the following command:

run_rosnode.py --checkpoint ~/Downloads/checkpoint_epoch_30.pth --lidar_topic "/velodyne_points" --lidar_frame "velodyne"

Convert PyTorch Model to older PyTorch Compatibility

Converion of the new model <path_to_model>/model.pth to old (compatible with < PyTorch1.3) <path_to_model>/model_py27.pth can be done with the following:

python scripts/convert_pytorch_models.py --checkpoint <path_to_model>/model

Note that there is no .pth ending in the script.

Time The Network

The execution time of the network can be timed using:

python scripts/time_network.py

Paper

Thank you for citing DeLORA (ICRA-2021) if you use any of this code.

@inproceedings{nubert2021self,
  title={Self-supervised Learning of LiDAR Odometry for Robotic Applications},
  author={Nubert, Julian and Khattak, Shehryar and Hutter, Marco},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  organization={IEEE}
}

Dependencies

Dependencies are specified in ./conda/DeLORA-py3.9.yml and ./pip/requirements.txt.

Tuning

If the result does not achieve the desired performance, please have a look at the normal estimation, since the loss is usually dominated by the plane-to-plane loss, which is impacted by noisy normal estimates. For the results presented in the paper we picked some reasonable parameters without further fine-tuning, but we are convinced that less noisy normal estimates would lead to an even better convergence.

Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022