QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

Overview

2021_QQ_AIAC_Tack1_1st

QQ浏览器2021AI算法大赛赛道一 第1名 方案

paper :

环境

python==3.7.10
torch==1.7.1
transformers==4.5.1
pretrain 需要显存>=24GB 内存>=100GB

数据下载

(1) 视频数据集
视频数据集在官网下载 https://algo.browser.qq.com/
预期主办方会开源数据集,开源后会将地址补上
下载后放到 ./input/data 文件夹
tag_list 为标签的 top1w,官方 baseline 中提供,放到同一文件夹

(2) 预训练模型
预训练模型使用了 https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
请使用 python3 -u download_pretrain_model.py 下载

步骤代码

(1) 预训练 + finetune
脚本命令:sh train.sh
时间算力:单模在 1 张 a100 上大约需要 pretrain(2 day),finetune(2 hour)
输出文件:每个单模的 checkpoint 保存在 jobN/model_finetune_1.pth
备注:各个单模间没有前后依赖关系,每个任务需要一张单卡,有多卡可以并行训练各个单模

(2) 代码结构说明
download_pretrain_model.py : 下载预训练模型的脚本
ensemble.py : 融合的脚本
job1-job6 : 六个模型训练任务,其文件结构完全一致,各 job 之间主要差别在预训练设置上
注:job1在赛后额外补充了一些代码注释
jobN/pretrain.py 预训练脚本
jobN/finetune.py finetune脚本
jobN/data 数据预处理部分,包含 dataset、mask token 等
jobN/config 包含 pretrain 与 finetune 的一些超参配置
jobN/qqmodel/qq_uni_model.py 模型定义

简介

简要介绍的 ppt 请参考 Introduction.pdf

模型简介

多模态模型结构与参数量和 Bert-large 一致,
layer=24, hidden_size=1024, num_attention_heads=16。
其输入为[CLS] Video_frame [SEP] Video_title [SEP]。
frame_feature 通过 fc 降维为 1024 维,与 text 的 emb 拼接。
Input_emb -> TransformerEncoder * 24 -> Pooling -> Fc -> Video_emb

预训练

预训练采用了 Tag classify, Mask language model, Mask frame model 三个任务

(1) Video tag classify 任务
tag 为人工标注的视频标签,pointwise 和 pairwise 数据集合中提供。
和官方提供的 baseline 一致,我们采用了出现频率前1w 的tag 做多标签分类任务。
Bert 最后一层的 [CLS] -> fc 得到 tag 的预测标签,与真实标签计算 BCE loss

(2) Mask language model 任务
与常见的自然语言处理 mlm 预训练方法相同,对 text 随机 15% 进行 mask,预测 mask 词。
多模态场景下,结合视频的信息预测 mask 词,可以有效融合多模态信息。

(3) Mask frame model 任务
对 frame 的随机 15% 进行 mask,mask 采用了全 0 的向量填充。
考虑到 frame 为连续的向量,难以类似于 mlm 做分类任务。
借鉴了对比学习思路,希望 mask 的预测帧在整个 batch 内的所有帧范围内与被 mask 的帧尽可能相似。
采用了 Nce loss,最大化 mask 帧和预测帧的互信息

(4) 多任务联合训练
预训练任务的 loss 采用了上述三个任务 loss 的加权和,
L = L(tag) * 1250 / 3 + L(mlm) / 3.75 + L(mfm) / 9
tag 梯度量级比较小,因此乘以了较大的权重。
注:各任务合适的权重对下游 finetune 的效果影响比较大。

(5) 预训练 Setting
初始化:bert 初始化权重来自于在中文语料预训练过的开源模型 https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
数据集:预训练使用了 pointwise 和 pairwise 集合,部分融合模型中加上了 test 集合(只有 mlm 和 mfm 任务)
超参:batch_size=128, epoch=40, learning_rate=5e-5, scheduler=warmup_with_cos_decay, warum_ratio=0.06
注:预训练更多的 epoch 对效果提升比较大,从10 epoch 提升至 20 epoch 对下游任务 finetune 效果提升显著。

Finetune

(1) 下游任务
视频 pair 分别通过 model 得到 256维 embedding,两个 embedding 的 cos 相似度与人工标注标签计算 mse

(2) Finetune header
实验中发现相似度任务中,使用 mean_pooling 或者 attention_pooling 聚合最后一层 emb 接 fc 层降维效果较好。

(3) Label normalize
评估指标为 spearman,考查预测值和实际值 rank 之间的相关性,因此对人工标注 label 做了 rank 归一化。
即 target = scipy.stats.rankdata(target, 'average')

(4) Finetune Setting
数据集:训练集使用了 pairwise 中 (id1%5!=0) | (id2%5 !=0) 的部分约 6.5w,验证集使用了(id1%5==0) & (id2%5==0) 的部分约 2.5k
超参:batch_size=32, epoch=10, learning_rate=1e-5, scheduler=warmup_with_cos_decay, warum_ratio=0.06

Ensemble

(1) 融合的方法
采用了 weighted concat -> svd 降维 方法进行融合。实验中发现这种方法降维效果折损较小。
concat_vec = [np.sqrt(w1) * emb1, np.sqrt(w2) * emb2, np.sqrt(w3) * emb3 ...]
svd_vec = SVD(concat_vec, 256)

(2) 融合的模型
最终的提交融合了六个模型。 模型都使用了 bert-large 这种结构,均为迭代过程中产出的模型,各模型之间只有微小的 diff,各个模型加权权重均为 1/6。
下面表格中列出了各模型的diff部分,验证集mse,验证集spearman

jobid ensemble-weight detail val-spearman val-mse
job1 1/6 base 0.886031 0.028813
job2 1/6 预训练tag分类任务为mean_pooling+fc 0.884257 0.029493
job3 1/6 预训练任务无 mfm 0.883843 0.029248
job4 1/6 预训练数据为 (point + pair)shuf-40epoch => pair-5epoch 0.885397 0.029059
job5 1/6 预训练数据为 (point-shuf => pair-shuf => test-shuf)-32epoch 0.885795 0.028866
job6 1/6 预训练 mlm/mfm mask概率调整为25% 0.886289 0.029039

(3) 单模型的效果与融合的效果
单模的测试集成绩约在 0.836
融合两个模型在 0.845
融合三个模型在 0.849
融合五个模型在 0.852

A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022