An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

Overview

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP is an exact algorithm based on the branch-and-bound technique for solving the semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problem with pairwise constraints (i.e. must-link and cannot-link constraints) described in the paper "An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering". This repository contains the C++ source code, the MATLAB scripts, and the datasets used for the experiments.

Installation

PC-SOS-SDP calls the semidefinite programming solver SDPNAL+ by using the MATLAB Engine API for C++. It requires the MATLAB engine library libMatlabEngine and the Matlab Data Array library libMatlabDataArray. PC-SOS-SDP calls the integer programming solver Gurobi. PC-SOS-SDP uses the Armadillo library to handle matrices and linear algebra operations efficiently. Before installing Armadillo, first install OpenBLAS and LAPACK along with the corresponding development files. PC-SOS-SDP implements a configurable thread pool of POSIX threads to speed up the branch-and-bound search.

Ubuntu and Debian instructions:

  1. Install MATLAB (>= 2016b)
  2. Install Gurobi (>= 9.0)
  3. Install CMake, OpenBLAS, LAPACK and Armadillo:
sudo apt-get update
sudo apt-get install cmake libopenblas-dev liblapack-dev libarmadillo-dev
  1. Open the makefile clustering_c++/Makefile
    • Set the variable matlab_path with your MATLAB folder.
    • Set the variable gurobi_path with your Gurobi folder.
  2. Compile the code:
cd clustering_c++/
make
  1. Download SDPNAL+, move the folder clustering_matlab containing the MATLAB source code of PC-SOS-SDP in the SDPNAL+ main directory and set the parameter SDP_SOLVER_FOLDER of the configuration file accordingly. This folder and its subfolders will be automatically added to the MATLAB search path when PC-SOS-SDP starts.

The code has been tested on Ubuntu Server 20.04 with MATLAB R2020b, Gurobi 9.2 and Armadillo 10.2.

Configuration

Various parameters used in PC-SOS-SDP can be modified in the configuration file clustering_c++/config.txt:

  • BRANCH_AND_BOUND_TOL - optimality tolerance of the branch-and-bound
  • BRANCH_AND_BOUND_PARALLEL - thread pool size: single thread (1), multi-thread (> 1)
  • BRANCH_AND_BOUND_MAX_NODES - maximum number of nodes
  • BRANCH_AND_BOUND_VISITING_STRATEGY - best first (0), depth first (1), breadth first (2)
  • SDP_SOLVER_SESSION_THREADS_ROOT - number of threads for the MATLAB session at the root
  • SDP_SOLVER_SESSION_THREADS - number of threads for the MATLAB session for the ML and CL nodes
  • SDP_SOLVER_FOLDER - full path of the SDPNAL+ folder
  • SDP_SOLVER_TOL - accuracy of SDPNAL+
  • SDP_SOLVER_VERBOSE - do not display log (0), display log (1)
  • SDP_SOLVER_MAX_CP_ITER_ROOT - maximum number of cutting-plane iterations at the root
  • SDP_SOLVER_MAX_CP_ITER - maximum number of cutting-plane iterations for the ML and CL nodes
  • SDP_SOLVER_CP_TOL - cutting-plane tolerance between two consecutive cutting-plane iterations
  • SDP_SOLVER_MAX_INEQ - maximum number of valid inequalities to add
  • SDP_SOLVER_INHERIT_PERC - fraction of inequalities to inherit
  • SDP_SOLVER_EPS_INEQ - tolerance for checking the violation of the inequalities
  • SDP_SOLVER_EPS_ACTIVE - tolerance for detecting the active inequalities
  • SDP_SOLVER_MAX_PAIR_INEQ - maximum number of pair inequalities to separate
  • SDP_SOLVER_PAIR_PERC - fraction of the most violated pair inequalities to add
  • SDP_SOLVER_MAX_TRIANGLE_INEQ - maximum number of triangle inequalities to separate
  • SDP_SOLVER_TRIANGLE_PERC - fraction of the most violated triangle inequalities to add

Usage

cd clustering_c++/
./bb <DATASET> <K> <CONSTRAINTS> <LOG> <RESULT>
  • DATASET - path of the dataset
  • K - number of clusters
  • CONSTRAINTS - path of the constraints
  • LOG - path of the log file
  • RESULT - path of the optimal cluster assignment matrix

File DATASET contains the data points x_ij and the must include an header line with the problem size n and the dimension d:

n d
x_11 x_12 ... x_1d
x_21 x_22 ... x_2d
...
...
x_n1 x_n2 ... x_nd

File CONSTRAINTS should include indices (i, j) of the data points involved in must-link (ML) and/or cannot-link (CL) constraints:

CL i1 j1
CL i2 j2
...
...
ML i3 j3
ML i4 j4

If it does not contain any constraint (empty file), PC-SOS-SDP becomes SOS-SDP (the exact solver for unsupervised MSSC).

Log

The log file reports the progress of the algorithm:

  • N - size of the current node
  • NODE_PAR - id of the parent node
  • NODE - id of the current node
  • LB_PAR - lower bound of the parent node
  • LB - lower bound of the current node
  • FLAG - termination flag of SDPNAL+
    • 0 - SDP is solved to the required accuracy
    • 1 - SDP is not solved successfully
    • -1, -2, -3 - SDP is partially solved successfully
  • TIME (s) - running time in seconds of the current node
  • CP_ITER - number of cutting-plane iterations
  • CP_FLAG - termination flag of the cutting-plane procedure
    • -3 - current bound is worse than the previous one
    • -2 - SDP is not solved successfully
    • -1 - maximum number of iterations
    • 0 - no violated inequalities
    • 1 - maximum number of inequalities
    • 2 - node must be pruned
    • 3 - cutting-plane tolerance
  • CP_INEQ - number of inequalities added in the last cutting-plane iteration
  • PAIR TRIANGLE CLIQUE - average number of added cuts for each class of inequalities
  • UB - current upper bound
  • GUB - global upper bound
  • I J - current branching decision
  • NODE_GAP - gap at the current node
  • GAP - overall gap
  • OPEN - number of open nodes

Log file example:

DATA_PATH, n, d, k: /home/ubuntu/PC-SOS-SDP/instances/glass.txt 214 9 6
CONSTRAINTS_PATH: /home/ubuntu/PC-SOS-SDP/instances/constraints/glass/ml_50_cl_50_3.txt
LOG_PATH: /home/ubuntu/PC-SOS_SDP/logs/glass/log_ml_50_cl_50_3.txt

BRANCH_AND_BOUND_TOL: 1e-4
BRANCH_AND_BOUND_PARALLEL: 16
BRANCH_AND_BOUND_MAX_NODES: 200
BRANCH_AND_BOUND_VISITING_STRATEGY: 0

SDP_SOLVER_SESSION_THREADS_ROOT: 16
SDP_SOLVER_SESSION_THREADS: 1
SDP_SOLVER_FOLDER: /home/ubuntu/PC-SOS-SDP/SDPNAL+/
SDP_SOLVER_TOL: 1e-05
SDP_SOLVER_VERBOSE: 0
SDP_SOLVER_MAX_CP_ITER_ROOT: 80
SDP_SOLVER_MAX_CP_ITER: 40
SDP_SOLVER_CP_TOL: 1e-06
SDP_SOLVER_MAX_INEQ: 100000
SDP_SOLVER_INHERIT_PERC: 1
SDP_SOLVER_EPS_INEQ: 0.0001
SDP_SOLVER_EPS_ACTIVE: 1e-06
SDP_SOLVER_MAX_PAIR_INEQ: 100000
SDP_SOLVER_PAIR_PERC: 0.05
SDP_SOLVER_MAX_TRIANGLE_INEQ: 100000
SDP_SOLVER_TRIANGLE_PERC: 0.05


|    N| NODE_PAR|    NODE|      LB_PAR|          LB|  FLAG|  TIME (s)| CP_ITER| CP_FLAG|   CP_INEQ|     PAIR  TRIANGLE    CLIQUE|          UB|         GUB|     I      J|     NODE_GAP|          GAP|  OPEN|
|  164|       -1|       0|        -inf|     93.3876|     0|       110|       7|      -3|      6456|  242.571      4802   8.14286|     93.5225|    93.5225*|    -1     -1|   0.00144229|   0.00144229|     0|
|  163|        0|       1|     93.3876|     93.4388|     0|        35|       2|      -3|      5958|        1      3675         0|     93.4777|    93.4777*|    79    142|  0.000416211|  0.000416211|     0|
|  164|        0|       2|     93.3876|     93.4494|     0|        47|       2|      -3|      6888|        0      4635         0|     93.5225|     93.4777|    79    142|  0.000302427|  0.000302427|     0|
|  162|        1|       3|     93.4388|      93.506|     0|        27|       1|       2|      6258|        9      3759         0|         inf|     93.4777|   119    152| -0.000302724| -0.000302724|     0|
|  163|        1|       4|     93.4388|     93.4536|     0|        47|       4|      -3|      3336|        0      1789         0|     93.4777|     93.4777|   119    152|   0.00025747|   0.00025747|     0|
|  164|        2|       5|     93.4494|     93.4549|     0|        37|       1|      -3|      6888|        0      5000         0|     93.5225|     93.4777|    47     54|  0.000243844|  0.000243844|     0|
|  163|        2|       6|     93.4494|     93.4708|     0|        51|       2|       2|      7292|       11      4693         0|     93.5559|     93.4777|    47     54|  7.36443e-05|  7.36443e-05|     0|
|  164|        5|       7|     93.4549|      93.475|     0|        22|       0|       2|      6888|        0         0         0|     93.5225|     93.4777|   122    153|  2.82805e-05|  2.82805e-05|     0|
|  163|        4|       8|     93.4536|     93.4536|     0|        38|       2|      -3|      3257|        0     668.5         0|     93.4704|    93.4704*|    47     54|  0.000180057|  0.000180057|     0|
|  163|        5|       9|     93.4549|     93.5216|     0|        41|       1|       2|      6893|        8      5000         0|         inf|     93.4704|   122    153| -0.000547847| -0.000547847|     0|
|  163|        8|      10|     93.4536|     93.4536|     0|        27|       1|      -3|      3257|        0       879         0|     93.4704|     93.4704|    37     45|  0.000180057|  0.000180057|     0|
|  162|        8|      11|     93.4536|     93.4838|     0|        33|       1|       2|      6158|       24      4233         0|         inf|     93.4704|    37     45| -0.000143677| -0.000143677|     0|
|  162|        4|      12|     93.4536|     93.4658|     0|        75|       5|      -3|      2793|      4.6      2379         0|     93.5111|     93.4704|    47     54|  4.89954e-05|  4.89954e-05|     0|
|  162|       10|      13|     93.4536|     93.5053|     0|        19|       0|       2|      3122|        0         0         0|         inf|     93.4704|    37     99|  -0.00037365|  -0.00037365|     0|
|  163|       10|      14|     93.4536|     93.4701|     0|        31|       0|       2|      3257|        0         0         0|     93.4704|     93.4704|    37     99|  3.13989e-06|  3.13989e-06|     0|

WALL_TIME: 304 sec
N_NODES: 15
AVG_INEQ: 2788.05
AVG_CP_ITER: 1.93333
ROOT_GAP: 0.00144229
GAP: 0
BEST: 93.4704
Owner
Antonio M. Sudoso
Antonio M. Sudoso
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022