Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Overview

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

reproducibility task

This is the repository for the paper Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigation, developed by Giacomo Medda, PhD student at University of Cagliari, with the support of Gianni Fenu, Full Professor at University of Cagliari, Mirko Marras, Non-tenure Track Assistant Professor at University of Cagliari, and Ludovico Boratto, Tenure Track Assistant Professor at University of Cagliari.

The goal of the paper was to find a common understanding and practical benchmarks on how and when each procedure of consumer fairness in recommender systems can be used in comparison to the others.

Repository Organization

  • reproducibility_study

    This is the directory that contains the source code of each reproduced paper identified by the author names of the respective paper.

    • Ashokan and Haas: Fairness metrics and bias mitigation strategies for rating predictions
    • Burke et al: Balanced Neighborhoods for Multi-sided Fairness in Recommendation
    • Ekstrand et al: All The Cool Kids, How Do They Fit In. Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
    • Frisch et al: Co-clustering for fair recommendation
    • Kamishima et al: Recommendation Independence
    • Li et al: User-oriented Fairness in Recommendation
    • Rastegarpanah et al: Fighting Fire with Fire. Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
    • Wu et al: Learning Fair Representations for Recommendation. A Graph-based Perspective
  • Preprocessing

    Contains the scripts to preprocess the raw datasets and to generate the input data for each reproduced paper.

  • Evaluation

    Contains the scripts to load the predictions of each reproduced paper, compute the metrics and generate plots and tables in latex and markdown forms.

  • Other Folders

    The other folders not already mentioned are part of the codebase that supports the scripts contained in Preprocessing and Evaluation. These directories and their contents are described by README_codebase, since the structure and code inside these folders is only used to support the reproducibility study and it is independent from the specific implementation of each paper.

Reproducibility Pipeline

  • Code Integration.

    The preprocessing of the raw datasets is performed by the scripts.

    The commands to preprocess each dataset are present at the top of the related dataset script, but the procedure is better described inside the REPRODUCE.md. The preprocessed datasets will be saved in data/preprocessed_datasets.

    Once the MovieLens 1M and the Last.FM 1K dataset have been processed, we can pass to the generation of the input data for each reproduced paper:

    The commands to generate the input data for each preprocessed dataset and sensitive attribute are present at the top of the script, but the procedure is better described inside the REPRODUCE.md). The generated input data will be saved in Preprocessing/input_data.

  • Mitigation Execution

    Each paper (folder) listed in the subsection reproducibility_study of Repository Organization contains a REPRODUCE.md file that describes everything to setup, prepare and run each reproduced paper. In particular, instructions to install the dependencies are provided, as well as the specific subfolders to fill with the input data generated in the previous step, in order to properly run the experiments of the selected paper. The procedure for each source code is better described in the already mentioned REPRODUCE.md file.

  • Relevance Estimation and Metrics Computation

    The REPRODUCE.md file contained in each "paper" folder describes also where the predictions can be found at the end of the mitigation procedure and guide the developer on following the instructions of the REPRODUCE.md of Evaluation that contains:

    • metrics_reproduced: script that loads all the predictions of relevance scores and computes the metrics in form of plots and latex tables This is the script that must be configured the most, since the paths of the specific predictions of each paper and model could be copied and pasted inside the script if the filenames do not correspond to what we expect and prepare. The REPRODUCE.MD already mentioned better described these steps and specifying which are the commands to execute to get the desired results.

Installation

Considering the codebase and the different versions of libraries used by each paper, multiple Python versions are mandatory to execute properly this code.

The codebase (that is the code not inside reproducibility_study, Preprocessing, Evaluation) needs a Python 3.8 installation and all the necessary dependencies can be installed with the requirements.txt file in the root of the repository with the following command in Windows:

pip install -r requirements.txt

or in Linux:

pip3 install -r requirements.txt

The installation of each reproducible paper is thoroughly described in the REPRODUCE.md that you can find in each paper folder, but every folder contains a requirements.txt file that you can use to install the dependencies in the same way. We recommend to use virtual environments at least for each reproduced paper, since some require specific versions of Python (2, 3, 3.7) and a virtual environment for each paper will maintain a good order in the code organization. Virtual environments can be created in different ways depending on the Python version and on the system. The Python Documentation describes the creation of virtual environments for Python >= 3.5, while the virtualenv Website can be used for Python 2.

Results

Top-N Recommendation Gender

Top-N Recommendation Gender

Top-N Recommendation Age

Top-N Recommendation Age

Rating Prediction Gender

Rating Prediction Gender

Rating Prediction Age

Rating Prediction Age

Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021